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ABSTRACT

With the increasing awareness of personal health, personal health data management has become an 
important part of people’s lives. Smart wearable devices (SWDs) collect people’s personal health data, 
and then store the data on cloud. Authorized entities access the data to provide personalized health 
services. However, these personal health data contain a large amount of sensitive information, which may 
pose a significant threat to people’s lives and property. To address this, this paper proposes a privacy-
preserving solution. SWD data is encrypted, and secure indexes are created using Bloom filter and 0-1 
encoding. Encrypted data and indexes are stored in a semi-trusted cloud. Only authorized entities can 
access the ciphertexts, ensuring secure personalized health management. Extensive experiments validate 
the scheme’s efficiency in index construction, query token generation, and ciphertext search. Security 
analysis confirms no external entity, including the cloud, gains additional information during retrieval.
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INTRODUCTION

With the increasing public health awareness, personal health data management is becoming an 
important component in people’s lives (Zeng et al., 2015). Smart wearable devices (SWDs), such as 
smartwatches, smart bracelets, etc., can collect motion data (such as motion trajectory and status, 
etc.) and physiological data (such as heart rate and blood pressure, etc.) of the SWD wearer (SWDW) 
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anytime and anywhere. In a personal health data management, the data collected by SWDs are 
typically organized into structured records. For example, data collected by SWDs show that on June 
16, 2023, at 8:15 a.m., the SWDW’s heart rate was 80 while located at 31°N, 114°E. This information 
can be represented as a record <2023, 6, 16, 08, 15, 1, 114, 0, 31, 80>, where 1 represents east 
longitude and 0 represents north latitude. However, due to the small storage space of SWDs and the 
risk of accidental damage or loss, the collected data are often automatically transmitted to the paired 
smartphone through a Bluetooth connection and then uploaded to the cloud to obtain unlimited storage 
space and use the cloud’s data backup and disaster recovery mechanisms to ensure that the data are 
permanently available. In addition, when the data collected by SWDs are uploaded to the cloud as part 
of electronic health records, medical institutions, insurance companies, or other health management 
institutions can access and use the data to provide more personalized health management services 
(Zeng et al., 2018). However, the data collected by SWDs contain sensitive information about the 
SWDWs. Once this sensitive information is leaked, it may affect personal image, property safety, and 
even life safety. Therefore, ensuring the security and privacy of sensitive information collected by 
SWDs and outsourced to the cloud is very important. Encryption is an effective solution to protect 
the data collected by SWDs. However, traditional encryption methods (e.g., block encryption) cannot 
support the most common data operations in the cloud, such as ciphertext retrieval (Cui et al., 2023). 
Although new ciphertext retrieval schemes have been proposed, they have limitations when applied 
to personal health data management.

The searchable encryption method for numerical data is widely recognized as one of the most 
effective methods for securely storing and retrieving numerical data (such as time, location, and heart 
rate collected by SWDs). Efficient searchable encryption methods for numerical data primarily fall 
into two categories: order-preserving encryption and bucket schemes. Agrawal et al. (2004) propose 
an order-preserving encryption (OPE) scheme. The main idea of an OPE scheme is to embed order 
information into the ciphertexts so that the order of the ciphertexts is consistent with that of the 
plaintexts. Specifically, for any data x>y, it holds Enc(x)>Enc(y), where Enc denotes the encryption 
algorithm in an OPE scheme. Therefore, an OPE scheme can be used by the cloud to support efficient 
range queries on ciphertexts. However, most current OPE schemes (Agrawal et al., 2004; Peng et al., 
2017; Popa et al., 2011; Quan et al., 2018) only support queries on the ciphertexts of single-dimensional 
data, and queries on the ciphertexts of personal health data are rarely involved (Zhan et al., 2022). 
Additionally, since the order information of ciphertexts is revealed in an OPE scheme, attackers can 
use this information to accurately infer the corresponding plaintexts, leading to potential data security 
issues (David & Nagaraja, 2004). Another kind of effective method for securely storing and retrieving 
numerical data is a bucketization scheme (Wang & Ravishankar, 2013; Hore et al., 2004; Hore et al., 
2012). In a bucketization scheme, data are divided into multiple buckets, and all data within a bucket 
are treated as a single unit. A secure encryption scheme is then used to encrypt all the data within 
each bucket, making the ciphertexts within the same bucket indistinguishable and effectively protecting 
the order information between them. During ciphertext querying, if the query range intersects with 
a certain bucket, all the ciphertexts within that bucket are returned as the query result. The number 
of ciphertexts within each bucket can be adjusted to balance the security of the order information 
and the accuracy of the query result. To further improve the efficiency of the bucketization scheme, 
bucketization-based index schemes have been proposed (Wang & Ravishankar, 2013; Mei et al., 
2018). However, the scheme in the reference (Wang & Ravishanka, 2013) uses complex matrix 
calculations, which is not efficient enough. The scheme in the reference (Mei et al., 2018) requires 
building a tree index (each internal node has n  child nodes) over the buckets and works well only 
for uniformly distributed datasets.

To address the limitations of previous schemes, we propose a Privacy-Preserving Storage and 
Retrieval Method for Personal Health Data (PPSRMPHD). Our method involves constructing binary 
trees for the collected data. The security of the binary trees can be ensured by using 0-1 encoding 
(Gupta & McKeown, 2001) and Bloom filter (Bloom, 1970) techniques. Additionally, SWDs generate 



International Journal of Web Services Research
Volume 20 • Issue 1

3

query tokens for authorized entities (such as doctors, medical institutions, insurance companies, and 
other health management organizations) based on their query conditions. These entities can only 
obtain the query tokens from SWDs after being authorized by the SWDWs. After obtaining the 
query tokens, these entities send them to the cloud to perform secure and efficient searches on the 
secure binary tree indexes, and retrieve the search results. We summarize our proposed PPSRMPHD 
scheme in three main aspects: (1) We construct secure binary tree indexes by using 0-1 encoding 
and Bloom filter techniques. (2) Based on secure binary tree indexes, we propose a PPSRMPHD 
scheme. (3) We conduct comprehensive experiments and analyze the correctness and security of the 
PPSRMPHD in detail.

RELATED WORK

Agrawal et al. (2004) first proposed an Order-Preserving Encryption (OPE) scheme, which preserves 
the partial order between plaintexts in ciphertexts. This property of OPE enables efficient comparison 
and searching of ciphertexts without decryption. However, the scheme lacks a formal security 
definition or analysis. Boldyreva et al. (2009) later proposed a rigorous security definition for OPE, 
which requires the scheme not to leak any information other than the partial order relation. They 
proved that no OPE scheme can satisfy this definition and proposed a weaker one, which requires 
ciphertexts to be indistinguishable from random increment function values. Based on their work, 
many related studies have been conducted (Boldyreva et al., 2011; Dyer et al., 2017; Krendelev et 
al., 2014; Teranishi et al., 2014; Xiao & Yen, 2012), but most only consider single-dimensional data 
and ignore the large amount of multi-dimensional data in the real world. Recently, Zhan et al. (2022) 
proposed an efficient Multi-Dimensional Order-Preserving Encryption scheme (MDOPE) which 
uses a network data structure and prefix encoding and Bloom filter techniques to enable queries on 
encrypted multi-dimensional data.

Bucketization schemes (Hore et al., 2004; Hore et al., 2012) are proposed to reduce order 
information leakage in OPE schemes. In a bucketization scheme, data are grouped into buckets, and 
all data within a bucket are treated as a whole. When a query matches a bucket, all data within that 
bucket are retrieved as the query results. Since the data within each bucket cannot be distinguished, the 
ordering information within each bucket has been protected. The first bucketization scheme is proposed 
in Hacigümüş et al. (2002), and subsequent research aims to improve bucketization schemes’ query 
security and efficiency (Hore et al., 2004; Lee, 2014). Lee (2014) proposed an ordered bucketization 
scheme to improve the search efficiency by organizing all buckets in an ordered manner (i.e., the data 
in a bucket are smaller than the data in another bucket).

Previous bucketization schemes (Hore et al., 2004; Hore et al., 2012; Hacigümüş et al., 2002) 
required local storage and search of buckets on the user side, which is inconvenient. To address this 
issue, Wang and Ravishankar (2013) proposed using Asymmetric Scalar-Product Preserving 
Encryption (ASPPE) (Wong et al., 2009) to process the buckets and construct a secure index called 
R̂ -tree, which can be stored and searched on a remote cloud server. Similarly, Mei et al. (2018) built 
a tree index (each internal node has n  child nodes, and each leaf node is associated with a bucket) 
to support range queries over encrypted personal health data. However, their scheme works well only 
for uniformly distributed datasets.

PRELIMINARIES

A Bloom filter (Bloom, 1970) is a probabilistic data structure used to test whether an element is a 
member of a set. It consists of three components, including (i) a bit array A  of n  bits, (ii) k  
independent hash functions h h h

k1 2
, , ,… , where h n

i
: { , } [ , ]*0 1 1→  and i k∈ [ , ]1 , and (iii) a dataset 
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D d d d
m

= …{ , , , }
1 2

 which contains m  different data. Given a data d ' , the Bloom filter can judge 
whether ′ ∈d D  or ′ ∉d D  by using the following method:

1. 	 The Bloom filter initializes all the bits of the bit array A  to 0.
2. 	 To add an element d

j
 to the Bloom filter, the filter calculates the hash value h d

i j
( )  and sets the 

bit at position h d
i j
( )  in the bit array A  to 1, where i k∈ [ , ]1  and j m∈ [ , ]1 .

3. 	 To test whether an element ′d  is in the dataset D , the Bloom filter calculates the hash value 
h d
i
( )′  for each of the k  independent hash functions, where i k∈ [ , ]1 . If the bit at position h d

i
( )′  

in the bit array A  is 1, the data ′d  is considered to be a member of the dataset D . However, if 
any of the bits at these positions are 0, then ′d  is not in D .

Given an integer a , its 0-1 encoding (Lin & Tzeng, 2005) is defined as two sets S
a
0  and S

a
1  

respectively, where S a a a i na
a n n i i
0

1 1
1 0 1= … = ≤ ≤− +{ | , }  and S a a a i na

a n n i i
1

1
1 1= … = ≤ ≤−{ | , } . 

Given two integers x  and y , the 0-1 encoding can be used to determine whether x  or y  is greater 
than the other. Specifically, S S x y

x y
1 0∩ ≠ ∅ ⇔ >  and S S x y

x y
1 0∩ = ∅ ⇔ ≤ . These conclusions 

have been proven by Lin and Tzeng (2005). For example, 5 and 4 are two integers. The binary value 
of 5 is ( )0101

2
 and the binary value of 4 is ( )0100

2
. The 0-1 encoding sets of 5 and 4 can be easily 

calculated S
5
0 1 011= { , } , S

5
1 01 0101= { , } , S

4
0 1 011 0101= { , , }  and S

4
1 01= { } . As S S

5
1

4
0∩ ≠ ∅ , 

there is 5 4> . On the contrary, as S S
4
1

5
0∩ = ∅ , there is 4 5≤ .

SYSTEM MODEL

Our system model involves four parties (as shown in Fig. 1). (1) SWDW, who wears a SWD, which 
collects personal health data from the SWDW. Then, the SWD transmits the collected data to the 
paired smartphone through a Bluetooth connection. (2) The paired smartphone, which encrypts the 
collected data, builds secure binary tree indexes and, finally, outsources the ciphertexts and secure 
binary tree indexes to the cloud. (3) A certain entity (such as a medical institution, doctor, insurance 
company, or other health management organization), who wants to access the SWDW’s personal 
health data. The entity requests a query token for his or her query request, and finally sends the query 
token to the cloud to retrieve personal health data. (4) Semi-trusted cloud, which follows designated 
protocols and procedures. The cloud performs ciphertext retrieval and sends search results to the 
entity. After receiving the ciphertexts, the entity decrypts the ciphertexts to obtain the SWDW’s 
personal health data.

Definition 1 – Correctness: Given a query range Q , the cloud performs data retrieval using the 
secure binary tree indexes and returns the search results C C C C

i
* * * *{ , , , }= …

1 2
. For each search 

result C
j
*  (1≤ ≤j i ), the scheme is considered correct if the decryption data d

j
 of C

j
*  falls in 

the query range Q .
Definition 2 - Security (Zhan et al., 2022; Guo et al., 2018): Given a leakage function F , if all 

adversaries A  are unable to reveal more information than the leakage function F , then the 
scheme is considered secure. The leakage function is defined as F u v position u v

diff
( , ) ( , )= , 

where position u v
diff

( , )  returns the position of the first difference between u  and v .
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For the purpose of brevity, we use abbreviations for several frequently appearing terms in the 
rest of this paper: SWD is short for smart wearable device; SWDW is short for smart wearable device 
wearer; ENT is short for the entity such as doctor, medical institution, insurance company, and other 
health management organization.

CONSTRUCTION OF THE PRIVACY-PRESERVING STORAGE AND 
RETRIEVAL METHOD FOR PERSONAL HEALTH DATA (PPSRMPHD)

This section first provides an overview of the construction of the PPSRMPHD and then provides a 
detailed description of the processes for key generation, encoding, index construction, token generation, 
search, and decryption algorithms.

The proposed PPSRMPHD scheme enables secure and fast query for encrypted personal health 
data. First, the SWD collects personal health data from a SWDW, converts these data into table records, 
and stores these table records in a table. Then, the SWD creates a binary tree for each column in the 
table. Next, the SWD runs the index construction algorithm to process the binary trees using 0-1 
encoding and Bloom filter techniques to obtain secure binary tree indexes. Additionally, the SWD 
needs to encrypt all the table records in the table by using a secure encryption scheme. Finally, the 
SWD stores the encrypted data and secure binary tree indexes in the cloud. When a query request 
from an ENT is received, the SWDW decides whether or not to generate a query token for the ENT. 
If the SWDW agrees to generate a query token for the ENT, the SWDW executes the token generation 
algorithm. This algorithm uses 0-1 encoding and hash functions from the Bloom filter to process 
the query request and generate a query token. Upon receiving the query token, the cloud performs 
data retrieval over the secure binary tree indexes in a top-down manner and returns the ciphertexts 

Figure 1. System Model
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to the ENT. Finally, the ENT decrypts the ciphertexts in the search results using the decryption key 
to obtain the SWDW’s personal health data.

Please note that there are many other encryption schemes that can be used to encrypt the personal 
health data of a SWDW. However, the focus of this paper is on the security and efficient query for 
encrypted personal health data in the cloud. Therefore, in order to clearly describe the PPSRMPHD 
scheme, we only use a simple symmetric encryption algorithm (such as AES), denoted by SE . Thus, 
during the decryption process, the ENT needs to request the decryption key from the SWDW, which 
is also the encryption key used to encrypt the SWDW’s personal health data.

Key Generation Algorithm - KeyGen SK( )1λ → : The algorithm takes a security parameter λ  as 
input and calculates a secret key SK  as output. The algorithm is executed by the SWD. The 
details of the algorithm are as follows:
1. 	 The algorithm KeyGen  adopts a secure encryption scheme SE SEGen SE Enc SE Dec= ( . , . , . ) . 
KeyGen  recalls SEGen.  to generate the first part of the secret key sk SEGen

1
1= . ( )λ , 

which is used to encrypt all the personal health data collected by the SWD.
2. 	 The algorithm KeyGen  chooses k  pseudo-random seeds sd sd sd

k1 2
, , ,…  as the second 

part of the secret key sk sd sd sd
k2 1 2

= …( , , , ) , which is used in the hash functions of the 
Bloom filter. Each hash function in the Bloom filter takes a value and a pseudo-random seed 
as input, and outputs a hash value. The hash value outputted by a hash function cannot be 
correctly calculated without sk sd sd sd

k2 1 2
= …( , , , ) . Hence, the security of secure binary 

tree indexes can be ensured by this type of hash functions in the Bloom filter. For the same 
reason, the security of query tokens can also be ensured by this type of hash functions.

3. 	 Finally, the algorithm KeyGen  outputs SK sk sk= ( , )
1 2

 as the secret key.
Encoding Algorithm - Encoding sv C

sv
( )→ : The algorithm takes a split value sv  as input, and 

outputs the encoding of sv , denoted by C
sv

. The algorithm is a sub-algorithm of index 
construction algorithm IndexGen  (see the following paragraphs). The details of the algorithm 
Encoding  are as follows:
1. 	 The algorithm Encoding  calculates the binary value of sv , denoted by c

sv
. The length of 

c
sv

 is l , which is a sufficiently large positive integer. If the length of c
sv

 is less than l , the 
algorithm Encoding  pads 0s at the high-order positions of c

sv
.

2. 	 For the security concern, the algorithm Encoding  randomizes the binary value c
sv

. 
Specifically, the algorithm Encoding  randomly selects a number r  and calculates its binary 
value, denoted by c

r
. The length of c

r
 is also l . Then, the algorithm Encoding  pads c

r
 

after c
sv

, i.e., c c
sv r
| , where |  represents the concatenation operation of two binary values.

3. 	 The algorithm Encoding  creates a bit array A
sv

. Each bit in A
sv

 is initialized to 0.
4. 	 For data comparison, the algorithm Encoding  calculates the 0-encoding of c c

sv r
| , denoted 

by S
c csv r|
0 . Then, the algorithm Encoding  uses the hash functions h h h

k1 2
, , ,…  in the Bloom 

filter and the second part secret key sk sd sd sd
k2 1 2

= …( , , , )  to process the binary values in 
S
c csv r|
0 . Specifically, the algorithm Encoding  calculates hash values:

V h s sd h s sd h s sd s S
sv k k c csv r
= … ∈{ ( , ), ( , ), , ( , ) | }

|1 1 2 2
0 	

and then sets the bit at v A
sv

∈  position of A
sv

 to 1.



International Journal of Web Services Research
Volume 20 • Issue 1

7

5. 	 The algorithm Encoding  outputs C
sv

 that C A
sv sv
= .

Example 1: Suppose the split value is 5, its 4-bit binary value is ( )0101
2

. If the random number is 
8, its 4-bit binary value is ( )1000

2
. After padding, the binary value is ( )0101 1000

2
 . Its 0-type 

encoding is 1 011 0101 11 0101 101 0101 1001, , , ,       { } . Then, the algorithm Encoding  uses 
the hash functions h h h

k1 2
, , ,…  in the Bloom filter and the second part secret key 

sk sd sd sd
k2 1 2

= …( , , , )  to process the binary values in 1 011 0101 11 0101 101 0101 1001, , , ,       { } , 
and then can obtain a set of hash values. Next, the algorithm Encoding  sets these hash values 
positions in a bit array to 1. Finally, the bit array is as the output of Encoding( )5 .

Index Construction Algorithm: Index T T( ) *→ : The algorithm takes a binary tree T  as input 
and constructs a secure binary tree index T *  as output. The algorithm is executed by the SWD.

Before constructing secure binary tree indexes, the SWD needs to do some preprocessing works. 
First, the SWD converts all the collected personal health data into table records and then stores them 
in a table. Second, the SWD adds a new column to the table and assigns a unique identification (ID) 
for each table record. Then, the SWD adds these IDs to the new column. Third, for each column 
(except for the column which stores IDs) in the table, the SWD constructs a binary tree. Each node 
of a binary tree contains a split value. Assuming that the binary tree on a certain column is T , if a 
table record has a value in that column that is the same as the split value of a leaf node in T , then 
the ID of this table record is associated with the leaf node in T . The algorithm Index  recalls the 
sub-algorithm Encoding  to process all the split values of nodes in T . Then, the algorithm Index  
can obtain the secure binary tree index, denoted by T * .

For the sake of illustration, we assume that this table has n  columns (except for the column 
which stores IDs). The binary trees on these columns are T T T

n1 2
, ,...,  respectively. The SWD executes 

the algorithm Index  n  times for T T T
n1 2

, ,...,  respectively. Then, the SWD can obtain the secure 
binary tree indexes T T T

n1 2
* * *, ,..., . Next, the SWD recalls the algorithm SE Enc.  to encrypt all the 

table records. Finally, the SWD stores the ciphertexts of these table records and T T T
n1 2

* * *, ,...,  in the 
cloud. We use Example 2 to illustrate the execution process above. 

Example 2: As shown in Figure 2, the SWD organizes all the collected personal health data into 
table records and stores them in a table. Then, the SWD adds a new column to the table to record 
the identification of each table record (as shown in the left-hand table of Figure 2). Next, the 
SWD uses the secure encryption algorithm SE Enc.  to encrypt all the table records (as shown 
in the right-hand table of Figure 2) and uploads the ciphertexts and their identifications to the 
cloud. Subsequently, for each column in the original table (excluding the added column for 
identifications), the SWD creates a binary tree. Each node in these binary trees contains a split 
value, and each leaf node is associated with a set of identifications. In a certain column, if a table 
record’s value is equal to the split value of a leaf node in the binary tree, the identification of 
that table record is stored in the set that is associated with that leaf node. Furthermore, the SWD 
uses the algorithm Index  to process all the binary trees T T

1 2
, ,...  (as shown in the left-hand side 

binary trees of Figure 2) and generate secure binary tree indexes T T
1 2
* *, ,...  (as shown in the 

right-hand side secure binary tree indexes of Figure 2). Finally, the SWD uploads these secure 
binary tree indexes to the cloud.

Token Generation Algorithm - Token SK Q token
Q

( , )→ : The algorithm takes the secret key SK  
and a queried request Q  as inputs. It calculates the query token token

Q
 of Q  as output. The 
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SWD runs the algorithm Token  to generate the query token token
Q

, and sends token
Q

 to the 
ENT. The details of the algorithm Token  are as follows:
1. 	 The ENT sends the query range Q  to SWDW. In formal terms, the query range Q  is 

[ , ] [ , ] ... [ , ]p q p q p q
i i i i i ik k1 1 2 2

× × × , where [ , ]p q
i ij j

 is the query range on the i
j
-th column, 

1
1 2

≤ < < < ≤i i i n
k

...  and n  is the maximum number of columns in the table. The 
query range Q  represents ENT wants to search for the SWDW’s personal health data within 
the range [ , ]p q

i i1 1
 in the i

1
-th column, the range [ , ]p q

i i2 2
 in the i

2
-th column, …, the range 

[ , ]p q
i ik k

 in the i
k
-th column simultaneously.

2. 	 If the SWDW agrees to the ENT’s query range Q , then the SWD executes the algorithm 
Token  to generate the query token token

Q
.

3. 	 For each range [ , ] {[ , ],[ , ],...,[ , ]}p q p q p q p q
i i i i i ik k

∈
1 1 2 2

, the algorithm Token  encodes the 

lower limit p  to its binary value, denoted by c
p

. Then, the algorithm Token  randomly 
selects a number r

p
 and calculates its binary value, denote by c

rp
. Note that, c

p
 and c

rp
 

have the same length l , where l  is a sufficiently large positive integer. If the length of c
p

 
and c

rp
 is less than l , the algorithm Token  pads 0s at the high-order positions of c

p
 and 

c
rp

. The algorithm Token  pads c
rp

 after c
p

, i.e., c c
p rp
| , where |  represents the 

concatenation operation of two binary values. By using the same method, the algorithm 
Token  converts the upper limit q  to c c

q rq
| , where c

q
 is the binary value of q  and c

rq
 is 

the binary value of the random number r
q

.
4. 	 The algorithm Token  calculates the 1-encoding of c c

p rp
| , denoted by S

c cp rp
|

1 . Then, the 

algorithm Token  uses the hash functions h h h
k1 2

, , ,…  in the Bloom filter and the second 
part secret key sk sd sd sd

k2 1 2
= …( , , , )  to process the binary values in S

c cp rp
|

1 . Specifically, 

the algorithm Token  calculates t h s sd h s sd h s sd s S
p k k c cp rp

= < … > ∈{ ( , ), ( , ), , ( , ) | }
|1 1 2 2

1 . By 

Figure 2. Secure binary tree indexes construction and personal health data encryption
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u s i n g  t h e  s a m e  m e t h o d ,  t h e  a l g o r i t h m  Encoding  c a l c u l a t e s 
t h s sd h s sd h s sd s S
q k k c cq rq

= < … > ∈{ ( , ), ( , ), , ( , ) | }
|1 1 2 2

1 .

5. 	 For the query range Q p q p q p q
i i i i i ik k

= × × ×[ , ] [ , ] ... [ , ]
1 1 2 2

, the algorithm Token  can calculate 

the query token token
Q

 of Q , which is token t t t t t t
Q p q p q p qi i i i ik ik

= < > < > < >{ , , , ,..., , }
1 1 2 2

. 

The SWDW sends the query token token
Q

 to the entities.
Search Algorithm - Search token T T T I

Q n
( ,{ ), ,..., }* * * *

1 2
→ : The algorithm takes a query token 

token
Q

 and the secure binary tree indexes { , ,..., }* * *T T T
n1 2

 as inputs. It outputs the retrieved 
ciphertexts as search results I * . The cloud executes the algorithm Search  to retrieve 
ciphertexts and then returns them to the ENT as response. The specific steps of the query 
process are as follows:
1. 	 After receiving the query token token

Q
 from the ENT, the algorithm Search  extracts each 

sub-token from token
Q

. We suppose < >t t
p q
,  is a sub-token, where:

< >∈ = < > < > < >t t t t t t t ttoken
p q p q p q p qQ i i i i ik ik

, { , , , ,..., , }
1 1 2 2

	

and T *  is a secure binary tree index, where T T T T
n

* * * *{ , ,..., }∈
1 2

. Note that, the sub-token < >t t
p q
,  

and security binary tree index T *  must satisfy that < >t t
p q
,  and T *  correspond to the same column 

of the table.
To provide a clear and detailed introduction to the query process, we suppose the sub-token 

< >t t
p q
,  represents the range [ , ]p q , the bit array C

sv
 represents the binary encoding of the split 

value sv , and C
sv

 is stored in a node of T * . The algorithm Search  executes the following steps to 
determine whether the split value sv  is within the range [ , ]p q , or less than the minimum value p  
of [ , ]p q , or greater than the maximum value q  of [ , ]p q . Please note that:

t h s sd h s sd h s sd s S
p k k c cp rp

= < … > ∈{ ( , ), ( , ), , ( , ) | }
|1 1 2 2

1 	

t h s sd h s sd h s sd s S
q k k c cq rq

= < … > ∈{ ( , ), ( , ), , ( , ) | }
|1 1 2 2

1 	

(see token generation algorithm) and C A
sv sv
=  where A

sv
 is a bit array which is calculated by using 

the Bloom filter and the values in the set:

V h s sd h s sd h s sd s S
sv k k c csv r
= … ∈{ ( , ), ( , ), , ( , ) | }

|1 1 2 2
0 	

(see encoding algorithm). Based on the characteristics of 0-1 encoding, we can know that (a) if 
S S
c c c csv r p rp

| |
0 1∩ ≠ ∅ , there is sv p< ; (b) if S S

c c c csv r p rp
| |

0 1∩ = ∅  and S S
c c c csv r q rq

| |
0 1∩ ≠ ∅ , there is 

p sv q< < ; (c) if S S
c c c csv r q rq

| |
0 1∩ = ∅ , there is q sv< . Since the comparison between the range 

[ , ]p q  and the split value sv  has been transformed into the operation of determining whether 
there is an intersection between several sets, Bloom filters can be used to further process the 
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intersection operation between several sets. Thus, it is easy to know that if S S
c c c csv r p rp

| |
0 1∩ ≠ ∅ , 

there exists a tuple in:

t h s sd h s sd h s sd s S
p k k c cp rp

= < … > ∈{ ( , ), ( , ), , ( , ) | }
|1 1 2 2

1 	

such that all the bits at h s sd
1 1
( , ) , h s sd

2 2
( , ) , …, h s sd

k k
( , )  positions of the binary array C

sv
 are 1. 

Thus, it is easy to know that if there exists a tuple in:

t h s sd h s sd h s sd s S
p k k c cp rp

= < … > ∈{ ( , ), ( , ), , ( , ) | }
|1 1 2 2

1 	

that all the bits at h s sd
1 1
( , ) , h s sd

2 2
( , ) , …, h s sd

k k
( , )  positions of the binary array C

sv
 are 1, there 

is S S
c c c csv r p rp

| |
0 1∩ ≠ ∅ , i.e., sv p< . Using the same method, the following determinations can be 

made. If there does not exist a tuple in:

t h s sd h s sd h s sd s S
p k k c cp rp

= < … > ∈{ ( , ), ( , ), , ( , ) | }
|1 1 2 2

1 	

such that all the bits at h s sd
1 1
( , ) , h s sd

2 2
( , ) , …, h s sd

k k
( , )  positions of the binary array C

sv
 are 1, 

and there exists a tuple in:

t h s sd h s sd h s sd s S
q k k c cq rq

= < … > ∈{ ( , ), ( , ), , ( , ) | }
|1 1 2 2

1 	

such that all the bits at h s sd
1 1
( , ) , h s sd

2 2
( , ) , …, h s sd

k k
( , )  positions of the binary array C

sv
 are 1, 

there is p sv q< < . If there does not exist a tuple in:

t h s sd h s sd h s sd s S
q k k c cq rq

= < … > ∈{ ( , ), ( , ), , ( , ) | }
|1 1 2 2

1 	

such that all the bits at h s sd
1 1
( , ) , h s sd

2 2
( , ) , …, h s sd

k k
( , )  positions of the binary array C

sv
 are 1, 

there is q sv< .

2. 	 The algorithm Search  uses the sub-token < >t t
p q
,  to perform top-down judgment on the 

nodes in the security binary tree index T * . Starting from the root node of T * , if sv p< , 
the algorithm Search  performs the judgment on the right sub-tree; if p sv q< < , the 
algorithm Search  performs the judgment simultaneously on the left and right subtrees; if 
q sv< , the algorithm Search  performs the judgment on the left sub-tree. By performing 
layer-by-layer judgment, the leaf nodes of T *  are eventually obtained, and their split values 
fall within the range [ , ]p q . As each leaf node of T *  is associated with an identification set 
(see Index construction algorithm), the algorithm Search  can obtain an identification set 
S
t tp q< >,  for the sub-token < >t t

p q
, .
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3. 	 For the sub-tokens in:

token t t t t t t
Q p q p q p qi i i i ik ik

= < > < > < >{ , , , ,..., , }
1 1 2 2

	

the algorithm Search  can obtain several corresponding identification sets, which are S
t tpi qi
< >

1 1
,

, 

S
t tpi qi
< >

2 2
,

, …, S
t tpik

qik
< >,

 respectively. Then, the algorithm Search  calculates the intersection of these 

sets, which is S
t tp q< >,∩ , where:

< >∈ = < > < > < >t t t t t t t ttoken
p q p q p q p qQ i i i i ik ik

, { , , , ,..., , }
1 1 2 2

	

4. 	 The algorithm Search  extracts the ciphertexts in the table stored in the cloud according to 
the identifications in S

t tp q< >,∩ . These ciphertexts are as the search results I *  for the query 

range Q p q p q p q
i i i i i ik k

= × × ×[ , ] [ , ] ... [ , ]
1 1 2 2

. Finally, the cloud returns I *  to the ENT.

Decryption Algorithm - Dec SK I I( , )* → : The algorithm takes the ciphertexts I *  as inputs. It 
outputs the plaintext I  through decrypting the ciphertexts with the first part of the secret key 
sk
1

, i.e., I SE Dec I sk= . ( , )*
1

. When the ENT receives the ciphertexts I * , it requests the 
decryption key sk

1
 from the SWDW, then runs the algorithm Dec  to decrypt the ciphertexts 

in I * , and finally obtain the plaintext search results I .

EXPERIMENTS

In our experiments, we compare the MDOPE scheme (Zhan et al., 2022) and the PPSRMPHD scheme. 
Usually, data collected by a SWD are transferred to the paired smartphone through a Bluetooth 
connection. Then, the smartphone encrypts the data before uploading to the cloud. Thus, in our 
experiments, we establish a smartphone emulator on a personal computer (AMD Ryzen 5 2500U 
CPU and 8G Random Access Memory) and implement these two schemes by using Java language. 
To achieve fairness in experimental comparisons, the experimental parameter settings for MDOPE 
and PPSRMPHD are provided below. In MDOPE and PPSRMPHD, each node of the tree index 
contains only one split value. We construct multiple datasets of 2-dimensional data for experimental 
comparisons. The ranges of these datasets are [ , ] [ , ]0 127 0 127× , [ , ] [ , ]0 255 0 255× , [ , ] [ , ]0 511 0 511× , 
[ , ] [ , ]0 1023 0 1023×  and [ , ] [ , ]0 2047 0 2047×  respectively. In PSRPHD, as the two-dimensional data 
should be transformed into two columns of table records, we build two secure binary tree indexes for 
these two columns, respectively.

Index Construction: As shown in Figure 3, when the depth of index increases from 8 to 12, the 
construction times of indexes in MDOPE and PPSRMPHD increase exponentially. This is 
because when the depth of the indexes increases, the total number of index nodes increases 
exponentially (the indexes in MDOPE and PPSRMPHD are tree structures). This results such 
that the construction time also increases exponentially. In our experimental settings, as the 
maximum range is [ , ]0 2047 , the encoding length is set to 12 bits, which is large enough for 
the range [ , ]0 2047 . In the index of MDOPE, the split value of each node is first transformed 
to a 12-bit binary value, and then padded with an additional 14-bit binary value (2 bits for data 
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comparison and 12 bits for randomization) after it. Next, the 26-bit (26=12+14) binary value 
is transformed to its prefix encoding. In PPSRMPHD, the index construction algorithm only 
generates a 24-bit binary value (12 bits for encoding the data in the range [ , ]0 2047  and 12 bits 
for randomization). As the encoding length of MDOPE is larger than that of PPSRMPHD and 
the prefix encoding used in MDOPE is more complex than the 0-1 encoding used in 
PPSRMPHD, the construction time of the index in MDOPE is more time consuming than the 
construction time of the index in PPSRMPHD.

Token Generation: As shown in Figure 4, in MDOPE and PPSRMPHD, when the encoding length 
increases one bit, the scale of the query range doubles, and the computation cost of the query 

Figure 3. Index construction

Figure 4. Query token generation
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token generation also doubles. Therefore, the times of the token generation algorithms in MDOPE 
and PPSRMPHD increase exponentially. In MDOPE, a query range [ , ]a b  is first transformed 
into two binary values c

a
 and c

b
 whose lengths are l , where l  increases from 4 to 8. As the 

length of c
a

 and c
b
 is l , the maximum range denoted by [ , ]a b  is [ , ]0 2 1l − . Then, MDOPE 

pads c
a

 and c
b
 with two different binary values whose lengths are l + 2  (2 bits for data 

comparison and l  bits for randomization). Next, MDOPE obtains two binary values c
a
'  and 

c
b
'  whose lengths are 2 2l +  (2 2 2l l l+ = + +( ) ). There are at most 22 2l+  different binary 

values between c
a
'  and c

b
' . Finally, MDOPE merges all these different binary values into a 

few binary values as the prefix encoding of [ , ]a b . As the merging process for these different 
binary values is very time-consuming, the search token generation algorithm in MDOPE is 
relatively inefficient. In PSRPHD, a query range [ , ]a b  is first transformed into two binary values 
c
a

 and c
b
 whose lengths are l . Then, PPSRMPHD pads c

a
 and c

b
 with two different binary 

values whose lengths are l . Next, PPSRMPHD obtains two binary values c
a
'  and c

b
'  whose 

lengths are 2l  (2l l l= + ). Finally, PPSRMPHD only calculates the 1-encoding of c
a
'  and c

b
'  

respectively to generate the search token of [ , ]a b . As the merging process in MDOPE is very 
time-consuming and the search token generation process in PPSRMPHD only requires to process 
two binary values, the token generation in PPSRMPHD is very efficient.

Search: As shown in Figure 5, when the number of data is fixed at 10,000 and the encoding length 
l  increases from 4 to 8, the processes of range query in MDOPE and PPSRMPHD are very 
efficient. During the process of range query, each search token needs to be compared with the 
index nodes in a top-down manner, and the total number of index node comparisons is a crucial 
factor affecting the search efficiency. In our experiments, the indexes in MDOPE and PPSRMPHD 
are tree structures and set to the same depth. Thus, the total numbers of index node comparisons 
in MDOPE and PPSRMPHD are almost the same. Additionally, as the process of index node 
comparisons only involves comparing hash values with binary arrays, the search algorithm has 

Figure 5. Search
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a very high efficiency. Therefore, the search times of MDOPE and PPSRMPHD are almost the 
same and very efficient.

CORRECTNESS AND SECURITY ANALYSIS

Theorem 1: The scheme PPSRMPHD satisfies the correctness property defined in Definition 1.
Proof 1: We suppose that Q p q p q p q

i i i i i ik k
= × × ×[ , ] [ , ] ... [ , ]

1 1 2 2
 is a query request and [ , ]p q

i ij j
 is the 

query range on the i
j
-th column, where i i i i

j k
=

1 2
, ,..., . And we suppose that the values of a 

table record d  in the i
1

-th, i
2
-th, …, i

k
-th columns are d

i1
, d
i2

, …, d
ik

, respectively. If d Q∈ , 

there are d p q
i i i1 1 1
∈ [ , ] , d p q

i i i2 2 2
∈ [ , ] , …, d p q

i i ik k k
∈ [ , ] . According to the 0-1 encoding, there 

a r e  S S
c c c cdi rdi

pi rpi1 1 1 1

0 1
| |
∩ = ∅  a n d  S S

c c c cdi rdi
qi rqi1 1 1 1

0 1
| |
∩ ≠ ∅ ;  S S

c c c cdi rdi
pi rpi2 2 2 2

0 1
| |
∩ = ∅  a n d 

S S
c c c cdi rdi

qi rqi2 2 2 2

0 1
| |
∩ ≠ ∅ ; … ; S S

c c c cdik
rdik

pik
rpik

| |
0 1∩ = ∅  and S S

c c c cdik
rdik

qik
rqik

| |
0 1∩ ≠ ∅ . Thus, for the 

i
j
-th column ( i i i i

j k
=

1 2
, ,..., ), if the split value sv

ij
 in a leaf node of the corresponding secure 

binary tree T
ij

*  is covered by the queried range [ , ]p q
i ij j

 of Q , all the IDs of table records whose 

values in the i
j
-th column equal to sv

ij
 can be found. If ranges [ , ]p q

i i1 1
, [ , ]p q

i i2 2
, …, [ , ]p q

i ik k
 

are used simultaneously for searching, all IDs of table records that satisfy the query request Q  
can be retrieved. Finally, all the ciphertexts in these table records are returned as the search 
results. In summary, the PPSRMPHD scheme is correct.

Theorem 2: The scheme PPSRMPHD satisfies the security property defined in Definition 2.
Proof 2: Due to the utilization of a secure encryption scheme SE , the security of personal health 

data collected by SWD can be ensured. The security of split values in the secure binary tree 
index can be analyzed in the following ways. The split values are processed by using the padding, 
the 0-1 encoding and the Bloom filter techniques. In the scheme PPSRMPHD, u u u u

n
= …

1 2
 

represents the binary value obtained by padding random number r  after the split value sv  (see 
encoding algorithm); v v v v

n
= …

1 2
 represents the binary value obtained by padding r

p
 (or r

q
) 

after the lower limit p  (or the upper limit q ) (see token generation algorithm). If the member 
in the intersection of S

c ru |
0  and S

c rp p||
1  (or S

c rq q||
1 ) is z , where the length of z  is m , it can deduced 

that v u
1 1
= , v u

2 2
= , … , v u

m m− −=
1 1

, x y
m m
≠ . As a result, the cloud is only aware of the 

leakage function F u v position u v
diff

( , ) ( , )= . Thus, the PPSRMPHD scheme satisfies the security 
property defined in Definition 2.

CONCLUSION

In this paper, we propose a Privacy-Preserving Storage and Retrieval Method for Personal Health 
Data (PPSRMPHD) scheme, which is designed to safeguard motion data (such as motion trajectory 
and status) and physiological data (such as heart rate and blood pressure) collected by SWDs. In the 
PPSRMPHD, the SWD transmits the collected data to the paired smartphone through a Bluetooth 
connection. The paired smartphone, which encrypts the collected data, builds secure binary tree 
indexes and, finally, outsources the ciphertexts and secure binary tree indexes to the cloud. The secure 
binary tree indexes are built by using Bloom filters and 0-1 encoding techniques. After obtaining 
approval from the SWDW, the SWD generates query tokens for the ENT. The ENT can use these 
query tokens to perform efficient queries in the cloud. By utilizing the 0-1 encoding techniques and 
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Bloom filters, the PPSRMPHD can transform the comparisons of ciphertexts into verifications of the 
presence of 1s at specific positions in a bit array. Therefore, this approach significantly improves the 
efficiency of the query process. Moreover, due to the low computational complexity of 0-1 encoding 
and Bloom filters, the PPSRMPHD scheme exhibits high efficiency in index construction and token 
generation. In summary, the PPSRMPHD is capable of achieving secure cloud storage and retrieval 
of personal health data collected by SWDs.
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