
DOI: 10.4018/IJWSR.331388

International Journal of Web Services Research
Volume 20 • Issue 1

This article published as an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and production in any medium,

provided the author of the original work and original publication source are properly credited.

*Corresponding Author

1

Secure Cloud Storage and Retrieval
of Personal Health Data From Smart
Wearable Devices With Privacy-
Preserving Techniques
Zhuolin Mei, Jiujiang University, China

Jing Yu, Jiujiang University, China

Jinzhou Huang, Hubei University of Arts and Science, China*

Bin Wu, Jiujiang University, China

Zhiqiang Zhao, Ningxia Normal University, China

Caicai Zhang, Zhejiang Institute of Mechanical and Electrical Engineering, China

Jiaoli Shi, Jiujiang Key Laboratory of Network and Information Security, China

Xiancheng Wang, Jiujiang University, China

Zongda Wu, Shaoxing University, China

ABSTRACT

With the increasing awareness of personal health, personal health data management has become an
important part of people’s lives. Smart wearable devices (SWDs) collect people’s personal health data,
and then store the data on cloud. Authorized entities access the data to provide personalized health
services. However, these personal health data contain a large amount of sensitive information, which may
pose a significant threat to people’s lives and property. To address this, this paper proposes a privacy-
preserving solution. SWD data is encrypted, and secure indexes are created using Bloom filter and 0-1
encoding. Encrypted data and indexes are stored in a semi-trusted cloud. Only authorized entities can
access the ciphertexts, ensuring secure personalized health management. Extensive experiments validate
the scheme’s efficiency in index construction, query token generation, and ciphertext search. Security
analysis confirms no external entity, including the cloud, gains additional information during retrieval.

Keywords
Cloud Storage, Data Retrieval, Personal Health Data, Privacy Protection, Smart Wearable Device

INTRODUCTION

With the increasing public health awareness, personal health data management is becoming an
important component in people’s lives (Zeng et al., 2015). Smart wearable devices (SWDs), such as
smartwatches, smart bracelets, etc., can collect motion data (such as motion trajectory and status,
etc.) and physiological data (such as heart rate and blood pressure, etc.) of the SWD wearer (SWDW)

International Journal of Web Services Research
Volume 20 • Issue 1

2

anytime and anywhere. In a personal health data management, the data collected by SWDs are
typically organized into structured records. For example, data collected by SWDs show that on June
16, 2023, at 8:15 a.m., the SWDW’s heart rate was 80 while located at 31°N, 114°E. This information
can be represented as a record <2023, 6, 16, 08, 15, 1, 114, 0, 31, 80>, where 1 represents east
longitude and 0 represents north latitude. However, due to the small storage space of SWDs and the
risk of accidental damage or loss, the collected data are often automatically transmitted to the paired
smartphone through a Bluetooth connection and then uploaded to the cloud to obtain unlimited storage
space and use the cloud’s data backup and disaster recovery mechanisms to ensure that the data are
permanently available. In addition, when the data collected by SWDs are uploaded to the cloud as part
of electronic health records, medical institutions, insurance companies, or other health management
institutions can access and use the data to provide more personalized health management services
(Zeng et al., 2018). However, the data collected by SWDs contain sensitive information about the
SWDWs. Once this sensitive information is leaked, it may affect personal image, property safety, and
even life safety. Therefore, ensuring the security and privacy of sensitive information collected by
SWDs and outsourced to the cloud is very important. Encryption is an effective solution to protect
the data collected by SWDs. However, traditional encryption methods (e.g., block encryption) cannot
support the most common data operations in the cloud, such as ciphertext retrieval (Cui et al., 2023).
Although new ciphertext retrieval schemes have been proposed, they have limitations when applied
to personal health data management.

The searchable encryption method for numerical data is widely recognized as one of the most
effective methods for securely storing and retrieving numerical data (such as time, location, and heart
rate collected by SWDs). Efficient searchable encryption methods for numerical data primarily fall
into two categories: order-preserving encryption and bucket schemes. Agrawal et al. (2004) propose
an order-preserving encryption (OPE) scheme. The main idea of an OPE scheme is to embed order
information into the ciphertexts so that the order of the ciphertexts is consistent with that of the
plaintexts. Specifically, for any data x>y, it holds Enc(x)>Enc(y), where Enc denotes the encryption
algorithm in an OPE scheme. Therefore, an OPE scheme can be used by the cloud to support efficient
range queries on ciphertexts. However, most current OPE schemes (Agrawal et al., 2004; Peng et al.,
2017; Popa et al., 2011; Quan et al., 2018) only support queries on the ciphertexts of single-dimensional
data, and queries on the ciphertexts of personal health data are rarely involved (Zhan et al., 2022).
Additionally, since the order information of ciphertexts is revealed in an OPE scheme, attackers can
use this information to accurately infer the corresponding plaintexts, leading to potential data security
issues (David & Nagaraja, 2004). Another kind of effective method for securely storing and retrieving
numerical data is a bucketization scheme (Wang & Ravishankar, 2013; Hore et al., 2004; Hore et al.,
2012). In a bucketization scheme, data are divided into multiple buckets, and all data within a bucket
are treated as a single unit. A secure encryption scheme is then used to encrypt all the data within
each bucket, making the ciphertexts within the same bucket indistinguishable and effectively protecting
the order information between them. During ciphertext querying, if the query range intersects with
a certain bucket, all the ciphertexts within that bucket are returned as the query result. The number
of ciphertexts within each bucket can be adjusted to balance the security of the order information
and the accuracy of the query result. To further improve the efficiency of the bucketization scheme,
bucketization-based index schemes have been proposed (Wang & Ravishankar, 2013; Mei et al.,
2018). However, the scheme in the reference (Wang & Ravishanka, 2013) uses complex matrix
calculations, which is not efficient enough. The scheme in the reference (Mei et al., 2018) requires
building a tree index (each internal node has n child nodes) over the buckets and works well only
for uniformly distributed datasets.

To address the limitations of previous schemes, we propose a Privacy-Preserving Storage and
Retrieval Method for Personal Health Data (PPSRMPHD). Our method involves constructing binary
trees for the collected data. The security of the binary trees can be ensured by using 0-1 encoding
(Gupta & McKeown, 2001) and Bloom filter (Bloom, 1970) techniques. Additionally, SWDs generate

International Journal of Web Services Research
Volume 20 • Issue 1

3

query tokens for authorized entities (such as doctors, medical institutions, insurance companies, and
other health management organizations) based on their query conditions. These entities can only
obtain the query tokens from SWDs after being authorized by the SWDWs. After obtaining the
query tokens, these entities send them to the cloud to perform secure and efficient searches on the
secure binary tree indexes, and retrieve the search results. We summarize our proposed PPSRMPHD
scheme in three main aspects: (1) We construct secure binary tree indexes by using 0-1 encoding
and Bloom filter techniques. (2) Based on secure binary tree indexes, we propose a PPSRMPHD
scheme. (3) We conduct comprehensive experiments and analyze the correctness and security of the
PPSRMPHD in detail.

RELATED WORK

Agrawal et al. (2004) first proposed an Order-Preserving Encryption (OPE) scheme, which preserves
the partial order between plaintexts in ciphertexts. This property of OPE enables efficient comparison
and searching of ciphertexts without decryption. However, the scheme lacks a formal security
definition or analysis. Boldyreva et al. (2009) later proposed a rigorous security definition for OPE,
which requires the scheme not to leak any information other than the partial order relation. They
proved that no OPE scheme can satisfy this definition and proposed a weaker one, which requires
ciphertexts to be indistinguishable from random increment function values. Based on their work,
many related studies have been conducted (Boldyreva et al., 2011; Dyer et al., 2017; Krendelev et
al., 2014; Teranishi et al., 2014; Xiao & Yen, 2012), but most only consider single-dimensional data
and ignore the large amount of multi-dimensional data in the real world. Recently, Zhan et al. (2022)
proposed an efficient Multi-Dimensional Order-Preserving Encryption scheme (MDOPE) which
uses a network data structure and prefix encoding and Bloom filter techniques to enable queries on
encrypted multi-dimensional data.

Bucketization schemes (Hore et al., 2004; Hore et al., 2012) are proposed to reduce order
information leakage in OPE schemes. In a bucketization scheme, data are grouped into buckets, and
all data within a bucket are treated as a whole. When a query matches a bucket, all data within that
bucket are retrieved as the query results. Since the data within each bucket cannot be distinguished, the
ordering information within each bucket has been protected. The first bucketization scheme is proposed
in Hacigümüş et al. (2002), and subsequent research aims to improve bucketization schemes’ query
security and efficiency (Hore et al., 2004; Lee, 2014). Lee (2014) proposed an ordered bucketization
scheme to improve the search efficiency by organizing all buckets in an ordered manner (i.e., the data
in a bucket are smaller than the data in another bucket).

Previous bucketization schemes (Hore et al., 2004; Hore et al., 2012; Hacigümüş et al., 2002)
required local storage and search of buckets on the user side, which is inconvenient. To address this
issue, Wang and Ravishankar (2013) proposed using Asymmetric Scalar-Product Preserving
Encryption (ASPPE) (Wong et al., 2009) to process the buckets and construct a secure index called
R̂ -tree, which can be stored and searched on a remote cloud server. Similarly, Mei et al. (2018) built
a tree index (each internal node has n child nodes, and each leaf node is associated with a bucket)
to support range queries over encrypted personal health data. However, their scheme works well only
for uniformly distributed datasets.

PRELIMINARIES

A Bloom filter (Bloom, 1970) is a probabilistic data structure used to test whether an element is a
member of a set. It consists of three components, including (i) a bit array A of n bits, (ii) k
independent hash functions h h h

k1 2
, , ,… , where h n

i
: { , } [,]*0 1 1→ and i k∈ [,]1 , and (iii) a dataset

International Journal of Web Services Research
Volume 20 • Issue 1

4

D d d d
m

= …{ , , , }
1 2

 which contains m different data. Given a data d ' , the Bloom filter can judge
whether ′ ∈d D or ′ ∉d D by using the following method:

1. 	 The Bloom filter initializes all the bits of the bit array A to 0.
2. 	 To add an element d

j
 to the Bloom filter, the filter calculates the hash value h d

i j
() and sets the

bit at position h d
i j
() in the bit array A to 1, where i k∈ [,]1 and j m∈ [,]1 .

3. 	 To test whether an element ′d is in the dataset D , the Bloom filter calculates the hash value
h d
i
()′ for each of the k independent hash functions, where i k∈ [,]1 . If the bit at position h d

i
()′

in the bit array A is 1, the data ′d is considered to be a member of the dataset D . However, if
any of the bits at these positions are 0, then ′d is not in D .

Given an integer a , its 0-1 encoding (Lin & Tzeng, 2005) is defined as two sets S
a
0 and S

a
1

respectively, where S a a a i na
a n n i i
0

1 1
1 0 1= … = ≤ ≤− +{ | , } and S a a a i na

a n n i i
1

1
1 1= … = ≤ ≤−{ | , } .

Given two integers x and y , the 0-1 encoding can be used to determine whether x or y is greater
than the other. Specifically, S S x y

x y
1 0∩ ≠ ∅ ⇔ > and S S x y

x y
1 0∩ = ∅ ⇔ ≤ . These conclusions

have been proven by Lin and Tzeng (2005). For example, 5 and 4 are two integers. The binary value
of 5 is ()0101

2
 and the binary value of 4 is ()0100

2
. The 0-1 encoding sets of 5 and 4 can be easily

calculated S
5
0 1 011= { , } , S

5
1 01 0101= { , } , S

4
0 1 011 0101= { , , } and S

4
1 01= { } . As S S

5
1

4
0∩ ≠ ∅ ,

there is 5 4> . On the contrary, as S S
4
1

5
0∩ = ∅ , there is 4 5≤ .

SYSTEM MODEL

Our system model involves four parties (as shown in Fig. 1). (1) SWDW, who wears a SWD, which
collects personal health data from the SWDW. Then, the SWD transmits the collected data to the
paired smartphone through a Bluetooth connection. (2) The paired smartphone, which encrypts the
collected data, builds secure binary tree indexes and, finally, outsources the ciphertexts and secure
binary tree indexes to the cloud. (3) A certain entity (such as a medical institution, doctor, insurance
company, or other health management organization), who wants to access the SWDW’s personal
health data. The entity requests a query token for his or her query request, and finally sends the query
token to the cloud to retrieve personal health data. (4) Semi-trusted cloud, which follows designated
protocols and procedures. The cloud performs ciphertext retrieval and sends search results to the
entity. After receiving the ciphertexts, the entity decrypts the ciphertexts to obtain the SWDW’s
personal health data.

Definition 1 – Correctness: Given a query range Q , the cloud performs data retrieval using the
secure binary tree indexes and returns the search results C C C C

i
* * * *{ , , , }= …

1 2
. For each search

result C
j
* (1≤ ≤j i), the scheme is considered correct if the decryption data d

j
 of C

j
* falls in

the query range Q .
Definition 2 - Security (Zhan et al., 2022; Guo et al., 2018): Given a leakage function F , if all

adversaries A are unable to reveal more information than the leakage function F , then the
scheme is considered secure. The leakage function is defined as F u v position u v

diff
(,) (,)= ,

where position u v
diff

(,) returns the position of the first difference between u and v .

International Journal of Web Services Research
Volume 20 • Issue 1

5

For the purpose of brevity, we use abbreviations for several frequently appearing terms in the
rest of this paper: SWD is short for smart wearable device; SWDW is short for smart wearable device
wearer; ENT is short for the entity such as doctor, medical institution, insurance company, and other
health management organization.

CONSTRUCTION OF THE PRIVACY-PRESERVING STORAGE AND
RETRIEVAL METHOD FOR PERSONAL HEALTH DATA (PPSRMPHD)

This section first provides an overview of the construction of the PPSRMPHD and then provides a
detailed description of the processes for key generation, encoding, index construction, token generation,
search, and decryption algorithms.

The proposed PPSRMPHD scheme enables secure and fast query for encrypted personal health
data. First, the SWD collects personal health data from a SWDW, converts these data into table records,
and stores these table records in a table. Then, the SWD creates a binary tree for each column in the
table. Next, the SWD runs the index construction algorithm to process the binary trees using 0-1
encoding and Bloom filter techniques to obtain secure binary tree indexes. Additionally, the SWD
needs to encrypt all the table records in the table by using a secure encryption scheme. Finally, the
SWD stores the encrypted data and secure binary tree indexes in the cloud. When a query request
from an ENT is received, the SWDW decides whether or not to generate a query token for the ENT.
If the SWDW agrees to generate a query token for the ENT, the SWDW executes the token generation
algorithm. This algorithm uses 0-1 encoding and hash functions from the Bloom filter to process
the query request and generate a query token. Upon receiving the query token, the cloud performs
data retrieval over the secure binary tree indexes in a top-down manner and returns the ciphertexts

Figure 1. System Model

International Journal of Web Services Research
Volume 20 • Issue 1

6

to the ENT. Finally, the ENT decrypts the ciphertexts in the search results using the decryption key
to obtain the SWDW’s personal health data.

Please note that there are many other encryption schemes that can be used to encrypt the personal
health data of a SWDW. However, the focus of this paper is on the security and efficient query for
encrypted personal health data in the cloud. Therefore, in order to clearly describe the PPSRMPHD
scheme, we only use a simple symmetric encryption algorithm (such as AES), denoted by SE . Thus,
during the decryption process, the ENT needs to request the decryption key from the SWDW, which
is also the encryption key used to encrypt the SWDW’s personal health data.

Key Generation Algorithm - KeyGen SK()1λ → : The algorithm takes a security parameter λ as
input and calculates a secret key SK as output. The algorithm is executed by the SWD. The
details of the algorithm are as follows:
1. 	 The algorithm KeyGen adopts a secure encryption scheme SE SEGen SE Enc SE Dec= (. , . , .) .
KeyGen recalls SEGen. to generate the first part of the secret key sk SEGen

1
1= . ()λ ,

which is used to encrypt all the personal health data collected by the SWD.
2. 	 The algorithm KeyGen chooses k pseudo-random seeds sd sd sd

k1 2
, , ,… as the second

part of the secret key sk sd sd sd
k2 1 2

= …(, , ,) , which is used in the hash functions of the
Bloom filter. Each hash function in the Bloom filter takes a value and a pseudo-random seed
as input, and outputs a hash value. The hash value outputted by a hash function cannot be
correctly calculated without sk sd sd sd

k2 1 2
= …(, , ,) . Hence, the security of secure binary

tree indexes can be ensured by this type of hash functions in the Bloom filter. For the same
reason, the security of query tokens can also be ensured by this type of hash functions.

3. 	 Finally, the algorithm KeyGen outputs SK sk sk= (,)
1 2

 as the secret key.
Encoding Algorithm - Encoding sv C

sv
()→ : The algorithm takes a split value sv as input, and

outputs the encoding of sv , denoted by C
sv

. The algorithm is a sub-algorithm of index
construction algorithm IndexGen (see the following paragraphs). The details of the algorithm
Encoding are as follows:
1. 	 The algorithm Encoding calculates the binary value of sv , denoted by c

sv
. The length of

c
sv

 is l , which is a sufficiently large positive integer. If the length of c
sv

 is less than l , the
algorithm Encoding pads 0s at the high-order positions of c

sv
.

2. 	 For the security concern, the algorithm Encoding randomizes the binary value c
sv

.
Specifically, the algorithm Encoding randomly selects a number r and calculates its binary
value, denoted by c

r
. The length of c

r
 is also l . Then, the algorithm Encoding pads c

r

after c
sv

, i.e., c c
sv r
| , where | represents the concatenation operation of two binary values.

3. 	 The algorithm Encoding creates a bit array A
sv

. Each bit in A
sv

 is initialized to 0.
4. 	 For data comparison, the algorithm Encoding calculates the 0-encoding of c c

sv r
| , denoted

by S
c csv r|
0 . Then, the algorithm Encoding uses the hash functions h h h

k1 2
, , ,… in the Bloom

filter and the second part secret key sk sd sd sd
k2 1 2

= …(, , ,) to process the binary values in
S
c csv r|
0 . Specifically, the algorithm Encoding calculates hash values:

V h s sd h s sd h s sd s S
sv k k c csv r
= … ∈{ (,), (,), , (,) | }

|1 1 2 2
0 	

and then sets the bit at v A
sv

∈ position of A
sv

 to 1.

International Journal of Web Services Research
Volume 20 • Issue 1

7

5. 	 The algorithm Encoding outputs C
sv

 that C A
sv sv
= .

Example 1: Suppose the split value is 5, its 4-bit binary value is ()0101
2

. If the random number is
8, its 4-bit binary value is ()1000

2
. After padding, the binary value is ()0101 1000

2
 . Its 0-type

encoding is 1 011 0101 11 0101 101 0101 1001, , , , { } . Then, the algorithm Encoding uses
the hash functions h h h

k1 2
, , ,… in the Bloom filter and the second part secret key

sk sd sd sd
k2 1 2

= …(, , ,) to process the binary values in 1 011 0101 11 0101 101 0101 1001, , , , { } ,
and then can obtain a set of hash values. Next, the algorithm Encoding sets these hash values
positions in a bit array to 1. Finally, the bit array is as the output of Encoding()5 .

Index Construction Algorithm: Index T T() *→ : The algorithm takes a binary tree T as input
and constructs a secure binary tree index T * as output. The algorithm is executed by the SWD.

Before constructing secure binary tree indexes, the SWD needs to do some preprocessing works.
First, the SWD converts all the collected personal health data into table records and then stores them
in a table. Second, the SWD adds a new column to the table and assigns a unique identification (ID)
for each table record. Then, the SWD adds these IDs to the new column. Third, for each column
(except for the column which stores IDs) in the table, the SWD constructs a binary tree. Each node
of a binary tree contains a split value. Assuming that the binary tree on a certain column is T , if a
table record has a value in that column that is the same as the split value of a leaf node in T , then
the ID of this table record is associated with the leaf node in T . The algorithm Index recalls the
sub-algorithm Encoding to process all the split values of nodes in T . Then, the algorithm Index
can obtain the secure binary tree index, denoted by T * .

For the sake of illustration, we assume that this table has n columns (except for the column
which stores IDs). The binary trees on these columns are T T T

n1 2
, ,..., respectively. The SWD executes

the algorithm Index n times for T T T
n1 2

, ,..., respectively. Then, the SWD can obtain the secure
binary tree indexes T T T

n1 2
* * *, ,..., . Next, the SWD recalls the algorithm SE Enc. to encrypt all the

table records. Finally, the SWD stores the ciphertexts of these table records and T T T
n1 2

* * *, ,..., in the
cloud. We use Example 2 to illustrate the execution process above.

Example 2: As shown in Figure 2, the SWD organizes all the collected personal health data into
table records and stores them in a table. Then, the SWD adds a new column to the table to record
the identification of each table record (as shown in the left-hand table of Figure 2). Next, the
SWD uses the secure encryption algorithm SE Enc. to encrypt all the table records (as shown
in the right-hand table of Figure 2) and uploads the ciphertexts and their identifications to the
cloud. Subsequently, for each column in the original table (excluding the added column for
identifications), the SWD creates a binary tree. Each node in these binary trees contains a split
value, and each leaf node is associated with a set of identifications. In a certain column, if a table
record’s value is equal to the split value of a leaf node in the binary tree, the identification of
that table record is stored in the set that is associated with that leaf node. Furthermore, the SWD
uses the algorithm Index to process all the binary trees T T

1 2
, ,... (as shown in the left-hand side

binary trees of Figure 2) and generate secure binary tree indexes T T
1 2
* *, ,... (as shown in the

right-hand side secure binary tree indexes of Figure 2). Finally, the SWD uploads these secure
binary tree indexes to the cloud.

Token Generation Algorithm - Token SK Q token
Q

(,)→ : The algorithm takes the secret key SK
and a queried request Q as inputs. It calculates the query token token

Q
 of Q as output. The

International Journal of Web Services Research
Volume 20 • Issue 1

8

SWD runs the algorithm Token to generate the query token token
Q

, and sends token
Q

 to the
ENT. The details of the algorithm Token are as follows:
1. 	 The ENT sends the query range Q to SWDW. In formal terms, the query range Q is

[,] [,] ... [,]p q p q p q
i i i i i ik k1 1 2 2

× × × , where [,]p q
i ij j

 is the query range on the i
j
-th column,

1
1 2

≤ < < < ≤i i i n
k

... and n is the maximum number of columns in the table. The
query range Q represents ENT wants to search for the SWDW’s personal health data within
the range [,]p q

i i1 1
 in the i

1
-th column, the range [,]p q

i i2 2
 in the i

2
-th column, …, the range

[,]p q
i ik k

 in the i
k
-th column simultaneously.

2. 	 If the SWDW agrees to the ENT’s query range Q , then the SWD executes the algorithm
Token to generate the query token token

Q
.

3. 	 For each range [,] {[,],[,],...,[,]}p q p q p q p q
i i i i i ik k

∈
1 1 2 2

, the algorithm Token encodes the

lower limit p to its binary value, denoted by c
p

. Then, the algorithm Token randomly
selects a number r

p
 and calculates its binary value, denote by c

rp
. Note that, c

p
 and c

rp

have the same length l , where l is a sufficiently large positive integer. If the length of c
p

and c

rp
 is less than l , the algorithm Token pads 0s at the high-order positions of c

p
 and

c
rp

. The algorithm Token pads c
rp

 after c
p

, i.e., c c
p rp
| , where | represents the

concatenation operation of two binary values. By using the same method, the algorithm
Token converts the upper limit q to c c

q rq
| , where c

q
 is the binary value of q and c

rq
 is

the binary value of the random number r
q

.
4. 	 The algorithm Token calculates the 1-encoding of c c

p rp
| , denoted by S

c cp rp
|

1 . Then, the

algorithm Token uses the hash functions h h h
k1 2

, , ,… in the Bloom filter and the second
part secret key sk sd sd sd

k2 1 2
= …(, , ,) to process the binary values in S

c cp rp
|

1 . Specifically,

the algorithm Token calculates t h s sd h s sd h s sd s S
p k k c cp rp

= < … > ∈{ (,), (,), , (,) | }
|1 1 2 2

1 . By

Figure 2. Secure binary tree indexes construction and personal health data encryption

International Journal of Web Services Research
Volume 20 • Issue 1

9

u s i n g t h e s a m e m e t h o d , t h e a l g o r i t h m Encoding c a l c u l a t e s
t h s sd h s sd h s sd s S
q k k c cq rq

= < … > ∈{ (,), (,), , (,) | }
|1 1 2 2

1 .

5. 	 For the query range Q p q p q p q
i i i i i ik k

= × × ×[,] [,] ... [,]
1 1 2 2

, the algorithm Token can calculate

the query token token
Q

 of Q , which is token t t t t t t
Q p q p q p qi i i i ik ik

= < > < > < >{ , , , ,..., , }
1 1 2 2

.

The SWDW sends the query token token
Q

 to the entities.
Search Algorithm - Search token T T T I

Q n
(,{), ,..., }* * * *

1 2
→ : The algorithm takes a query token

token
Q

 and the secure binary tree indexes { , ,..., }* * *T T T
n1 2

 as inputs. It outputs the retrieved
ciphertexts as search results I * . The cloud executes the algorithm Search to retrieve
ciphertexts and then returns them to the ENT as response. The specific steps of the query
process are as follows:
1. 	 After receiving the query token token

Q
 from the ENT, the algorithm Search extracts each

sub-token from token
Q

. We suppose < >t t
p q
, is a sub-token, where:

< >∈ = < > < > < >t t t t t t t ttoken
p q p q p q p qQ i i i i ik ik

, { , , , ,..., , }
1 1 2 2

	

and T * is a secure binary tree index, where T T T T
n

* * * *{ , ,..., }∈
1 2

. Note that, the sub-token < >t t
p q
,

and security binary tree index T * must satisfy that < >t t
p q
, and T * correspond to the same column

of the table.
To provide a clear and detailed introduction to the query process, we suppose the sub-token

< >t t
p q
, represents the range [,]p q , the bit array C

sv
 represents the binary encoding of the split

value sv , and C
sv

 is stored in a node of T * . The algorithm Search executes the following steps to
determine whether the split value sv is within the range [,]p q , or less than the minimum value p
of [,]p q , or greater than the maximum value q of [,]p q . Please note that:

t h s sd h s sd h s sd s S
p k k c cp rp

= < … > ∈{ (,), (,), , (,) | }
|1 1 2 2

1 	

t h s sd h s sd h s sd s S
q k k c cq rq

= < … > ∈{ (,), (,), , (,) | }
|1 1 2 2

1 	

(see token generation algorithm) and C A
sv sv
= where A

sv
 is a bit array which is calculated by using

the Bloom filter and the values in the set:

V h s sd h s sd h s sd s S
sv k k c csv r
= … ∈{ (,), (,), , (,) | }

|1 1 2 2
0 	

(see encoding algorithm). Based on the characteristics of 0-1 encoding, we can know that (a) if
S S
c c c csv r p rp

| |
0 1∩ ≠ ∅ , there is sv p< ; (b) if S S

c c c csv r p rp
| |

0 1∩ = ∅ and S S
c c c csv r q rq

| |
0 1∩ ≠ ∅ , there is

p sv q< < ; (c) if S S
c c c csv r q rq

| |
0 1∩ = ∅ , there is q sv< . Since the comparison between the range

[,]p q and the split value sv has been transformed into the operation of determining whether
there is an intersection between several sets, Bloom filters can be used to further process the

International Journal of Web Services Research
Volume 20 • Issue 1

10

intersection operation between several sets. Thus, it is easy to know that if S S
c c c csv r p rp

| |
0 1∩ ≠ ∅ ,

there exists a tuple in:

t h s sd h s sd h s sd s S
p k k c cp rp

= < … > ∈{ (,), (,), , (,) | }
|1 1 2 2

1 	

such that all the bits at h s sd
1 1
(,) , h s sd

2 2
(,) , …, h s sd

k k
(,) positions of the binary array C

sv
 are 1.

Thus, it is easy to know that if there exists a tuple in:

t h s sd h s sd h s sd s S
p k k c cp rp

= < … > ∈{ (,), (,), , (,) | }
|1 1 2 2

1 	

that all the bits at h s sd
1 1
(,) , h s sd

2 2
(,) , …, h s sd

k k
(,) positions of the binary array C

sv
 are 1, there

is S S
c c c csv r p rp

| |
0 1∩ ≠ ∅ , i.e., sv p< . Using the same method, the following determinations can be

made. If there does not exist a tuple in:

t h s sd h s sd h s sd s S
p k k c cp rp

= < … > ∈{ (,), (,), , (,) | }
|1 1 2 2

1 	

such that all the bits at h s sd
1 1
(,) , h s sd

2 2
(,) , …, h s sd

k k
(,) positions of the binary array C

sv
 are 1,

and there exists a tuple in:

t h s sd h s sd h s sd s S
q k k c cq rq

= < … > ∈{ (,), (,), , (,) | }
|1 1 2 2

1 	

such that all the bits at h s sd
1 1
(,) , h s sd

2 2
(,) , …, h s sd

k k
(,) positions of the binary array C

sv
 are 1,

there is p sv q< < . If there does not exist a tuple in:

t h s sd h s sd h s sd s S
q k k c cq rq

= < … > ∈{ (,), (,), , (,) | }
|1 1 2 2

1 	

such that all the bits at h s sd
1 1
(,) , h s sd

2 2
(,) , …, h s sd

k k
(,) positions of the binary array C

sv
 are 1,

there is q sv< .

2. 	 The algorithm Search uses the sub-token < >t t
p q
, to perform top-down judgment on the

nodes in the security binary tree index T * . Starting from the root node of T * , if sv p< ,
the algorithm Search performs the judgment on the right sub-tree; if p sv q< < , the
algorithm Search performs the judgment simultaneously on the left and right subtrees; if
q sv< , the algorithm Search performs the judgment on the left sub-tree. By performing
layer-by-layer judgment, the leaf nodes of T * are eventually obtained, and their split values
fall within the range [,]p q . As each leaf node of T * is associated with an identification set
(see Index construction algorithm), the algorithm Search can obtain an identification set
S
t tp q< >, for the sub-token < >t t

p q
, .

International Journal of Web Services Research
Volume 20 • Issue 1

11

3. 	 For the sub-tokens in:

token t t t t t t
Q p q p q p qi i i i ik ik

= < > < > < >{ , , , ,..., , }
1 1 2 2

	

the algorithm Search can obtain several corresponding identification sets, which are S
t tpi qi
< >

1 1
,

,

S
t tpi qi
< >

2 2
,

, …, S
t tpik

qik
< >,

 respectively. Then, the algorithm Search calculates the intersection of these

sets, which is S
t tp q< >,∩ , where:

< >∈ = < > < > < >t t t t t t t ttoken
p q p q p q p qQ i i i i ik ik

, { , , , ,..., , }
1 1 2 2

	

4. 	 The algorithm Search extracts the ciphertexts in the table stored in the cloud according to
the identifications in S

t tp q< >,∩ . These ciphertexts are as the search results I * for the query

range Q p q p q p q
i i i i i ik k

= × × ×[,] [,] ... [,]
1 1 2 2

. Finally, the cloud returns I * to the ENT.

Decryption Algorithm - Dec SK I I(,)* → : The algorithm takes the ciphertexts I * as inputs. It
outputs the plaintext I through decrypting the ciphertexts with the first part of the secret key
sk
1

, i.e., I SE Dec I sk= . (,)*
1

. When the ENT receives the ciphertexts I * , it requests the
decryption key sk

1
 from the SWDW, then runs the algorithm Dec to decrypt the ciphertexts

in I * , and finally obtain the plaintext search results I .

EXPERIMENTS

In our experiments, we compare the MDOPE scheme (Zhan et al., 2022) and the PPSRMPHD scheme.
Usually, data collected by a SWD are transferred to the paired smartphone through a Bluetooth
connection. Then, the smartphone encrypts the data before uploading to the cloud. Thus, in our
experiments, we establish a smartphone emulator on a personal computer (AMD Ryzen 5 2500U
CPU and 8G Random Access Memory) and implement these two schemes by using Java language.
To achieve fairness in experimental comparisons, the experimental parameter settings for MDOPE
and PPSRMPHD are provided below. In MDOPE and PPSRMPHD, each node of the tree index
contains only one split value. We construct multiple datasets of 2-dimensional data for experimental
comparisons. The ranges of these datasets are [,] [,]0 127 0 127× , [,] [,]0 255 0 255× , [,] [,]0 511 0 511× ,
[,] [,]0 1023 0 1023× and [,] [,]0 2047 0 2047× respectively. In PSRPHD, as the two-dimensional data
should be transformed into two columns of table records, we build two secure binary tree indexes for
these two columns, respectively.

Index Construction: As shown in Figure 3, when the depth of index increases from 8 to 12, the
construction times of indexes in MDOPE and PPSRMPHD increase exponentially. This is
because when the depth of the indexes increases, the total number of index nodes increases
exponentially (the indexes in MDOPE and PPSRMPHD are tree structures). This results such
that the construction time also increases exponentially. In our experimental settings, as the
maximum range is [,]0 2047 , the encoding length is set to 12 bits, which is large enough for
the range [,]0 2047 . In the index of MDOPE, the split value of each node is first transformed
to a 12-bit binary value, and then padded with an additional 14-bit binary value (2 bits for data

International Journal of Web Services Research
Volume 20 • Issue 1

12

comparison and 12 bits for randomization) after it. Next, the 26-bit (26=12+14) binary value
is transformed to its prefix encoding. In PPSRMPHD, the index construction algorithm only
generates a 24-bit binary value (12 bits for encoding the data in the range [,]0 2047 and 12 bits
for randomization). As the encoding length of MDOPE is larger than that of PPSRMPHD and
the prefix encoding used in MDOPE is more complex than the 0-1 encoding used in
PPSRMPHD, the construction time of the index in MDOPE is more time consuming than the
construction time of the index in PPSRMPHD.

Token Generation: As shown in Figure 4, in MDOPE and PPSRMPHD, when the encoding length
increases one bit, the scale of the query range doubles, and the computation cost of the query

Figure 3. Index construction

Figure 4. Query token generation

International Journal of Web Services Research
Volume 20 • Issue 1

13

token generation also doubles. Therefore, the times of the token generation algorithms in MDOPE
and PPSRMPHD increase exponentially. In MDOPE, a query range [,]a b is first transformed
into two binary values c

a
 and c

b
 whose lengths are l , where l increases from 4 to 8. As the

length of c
a

 and c
b
 is l , the maximum range denoted by [,]a b is [,]0 2 1l − . Then, MDOPE

pads c
a

 and c
b
 with two different binary values whose lengths are l + 2 (2 bits for data

comparison and l bits for randomization). Next, MDOPE obtains two binary values c
a
' and

c
b
' whose lengths are 2 2l + (2 2 2l l l+ = + +()). There are at most 22 2l+ different binary

values between c
a
' and c

b
' . Finally, MDOPE merges all these different binary values into a

few binary values as the prefix encoding of [,]a b . As the merging process for these different
binary values is very time-consuming, the search token generation algorithm in MDOPE is
relatively inefficient. In PSRPHD, a query range [,]a b is first transformed into two binary values
c
a

 and c
b
 whose lengths are l . Then, PPSRMPHD pads c

a
 and c

b
 with two different binary

values whose lengths are l . Next, PPSRMPHD obtains two binary values c
a
' and c

b
' whose

lengths are 2l (2l l l= +). Finally, PPSRMPHD only calculates the 1-encoding of c
a
' and c

b
'

respectively to generate the search token of [,]a b . As the merging process in MDOPE is very
time-consuming and the search token generation process in PPSRMPHD only requires to process
two binary values, the token generation in PPSRMPHD is very efficient.

Search: As shown in Figure 5, when the number of data is fixed at 10,000 and the encoding length
l increases from 4 to 8, the processes of range query in MDOPE and PPSRMPHD are very
efficient. During the process of range query, each search token needs to be compared with the
index nodes in a top-down manner, and the total number of index node comparisons is a crucial
factor affecting the search efficiency. In our experiments, the indexes in MDOPE and PPSRMPHD
are tree structures and set to the same depth. Thus, the total numbers of index node comparisons
in MDOPE and PPSRMPHD are almost the same. Additionally, as the process of index node
comparisons only involves comparing hash values with binary arrays, the search algorithm has

Figure 5. Search

International Journal of Web Services Research
Volume 20 • Issue 1

14

a very high efficiency. Therefore, the search times of MDOPE and PPSRMPHD are almost the
same and very efficient.

CORRECTNESS AND SECURITY ANALYSIS

Theorem 1: The scheme PPSRMPHD satisfies the correctness property defined in Definition 1.
Proof 1: We suppose that Q p q p q p q

i i i i i ik k
= × × ×[,] [,] ... [,]

1 1 2 2
 is a query request and [,]p q

i ij j
 is the

query range on the i
j
-th column, where i i i i

j k
=

1 2
, ,..., . And we suppose that the values of a

table record d in the i
1

-th, i
2
-th, …, i

k
-th columns are d

i1
, d
i2

, …, d
ik

, respectively. If d Q∈ ,

there are d p q
i i i1 1 1
∈ [,] , d p q

i i i2 2 2
∈ [,] , …, d p q

i i ik k k
∈ [,] . According to the 0-1 encoding, there

a r e S S
c c c cdi rdi

pi rpi1 1 1 1

0 1
| |
∩ = ∅ a n d S S

c c c cdi rdi
qi rqi1 1 1 1

0 1
| |
∩ ≠ ∅ ; S S

c c c cdi rdi
pi rpi2 2 2 2

0 1
| |
∩ = ∅ a n d

S S
c c c cdi rdi

qi rqi2 2 2 2

0 1
| |
∩ ≠ ∅ ; … ; S S

c c c cdik
rdik

pik
rpik

| |
0 1∩ = ∅ and S S

c c c cdik
rdik

qik
rqik

| |
0 1∩ ≠ ∅ . Thus, for the

i
j
-th column (i i i i

j k
=

1 2
, ,...,), if the split value sv

ij
 in a leaf node of the corresponding secure

binary tree T
ij

* is covered by the queried range [,]p q
i ij j

 of Q , all the IDs of table records whose

values in the i
j
-th column equal to sv

ij
 can be found. If ranges [,]p q

i i1 1
, [,]p q

i i2 2
, …, [,]p q

i ik k

are used simultaneously for searching, all IDs of table records that satisfy the query request Q
can be retrieved. Finally, all the ciphertexts in these table records are returned as the search
results. In summary, the PPSRMPHD scheme is correct.

Theorem 2: The scheme PPSRMPHD satisfies the security property defined in Definition 2.
Proof 2: Due to the utilization of a secure encryption scheme SE , the security of personal health

data collected by SWD can be ensured. The security of split values in the secure binary tree
index can be analyzed in the following ways. The split values are processed by using the padding,
the 0-1 encoding and the Bloom filter techniques. In the scheme PPSRMPHD, u u u u

n
= …

1 2

represents the binary value obtained by padding random number r after the split value sv (see
encoding algorithm); v v v v

n
= …

1 2
 represents the binary value obtained by padding r

p
 (or r

q
)

after the lower limit p (or the upper limit q) (see token generation algorithm). If the member
in the intersection of S

c ru |
0 and S

c rp p||
1 (or S

c rq q||
1) is z , where the length of z is m , it can deduced

that v u
1 1
= , v u

2 2
= , … , v u

m m− −=
1 1

, x y
m m
≠ . As a result, the cloud is only aware of the

leakage function F u v position u v
diff

(,) (,)= . Thus, the PPSRMPHD scheme satisfies the security
property defined in Definition 2.

CONCLUSION

In this paper, we propose a Privacy-Preserving Storage and Retrieval Method for Personal Health
Data (PPSRMPHD) scheme, which is designed to safeguard motion data (such as motion trajectory
and status) and physiological data (such as heart rate and blood pressure) collected by SWDs. In the
PPSRMPHD, the SWD transmits the collected data to the paired smartphone through a Bluetooth
connection. The paired smartphone, which encrypts the collected data, builds secure binary tree
indexes and, finally, outsources the ciphertexts and secure binary tree indexes to the cloud. The secure
binary tree indexes are built by using Bloom filters and 0-1 encoding techniques. After obtaining
approval from the SWDW, the SWD generates query tokens for the ENT. The ENT can use these
query tokens to perform efficient queries in the cloud. By utilizing the 0-1 encoding techniques and

International Journal of Web Services Research
Volume 20 • Issue 1

15

Bloom filters, the PPSRMPHD can transform the comparisons of ciphertexts into verifications of the
presence of 1s at specific positions in a bit array. Therefore, this approach significantly improves the
efficiency of the query process. Moreover, due to the low computational complexity of 0-1 encoding
and Bloom filters, the PPSRMPHD scheme exhibits high efficiency in index construction and token
generation. In summary, the PPSRMPHD is capable of achieving secure cloud storage and retrieval
of personal health data collected by SWDs.

ACKNOWLEDGMENT

This research was supported by the National Natural Science Foundation of China (No. 61962029,
62262033, 62062045, 62362042); the Jiangxi Provincial Natural Science Foundation of China (No.
20202BAB212006, 20224BAB202012, 20202ACBL202005); the Science and Technology Research
Project of Jiangxi Education Department (No. GJJ201832, GJJ211815); the Hangzhou Philosophy
and Social Sciences Planning Project (No. M22JC067); the Zhejiang Provincial Natural Science
Foundation of China (No.LR23F020001); the Hubei Natural Science Foundation Innovation and
Development Joint Fund Project under Grant (No.2022CFD101); the Xiangyang High-tech Key
Science and Technology Plan Project under Grant (No.2022ABH006848); the Hubei Superior and
Distinctive Discipline Group of “New Energy Vehicle and Smart Transportation.”

International Journal of Web Services Research
Volume 20 • Issue 1

16

REFERENCES

Agrawal, R., Kiernan, J., Srikant, R., & Xu, Y. (2004, June). Order preserving encryption for numeric data.
In Proceedings of the 2004 ACM SIGMOD international conference on management of data (pp. 563-574).
doi:10.1145/1007568.1007632

Bloom, B. H. (1970). Space/time trade-offs in hash coding with allowable errors. Communications of the ACM,
13(7), 422–426. doi:10.1145/362686.362692

Boldyreva, A., Chenette, N., Lee, Y., & O’Neill, A. (2009). Order-preserving symmetric encryption. In Advances
in cryptology-EUROCRYPT 2009: 28th annual international conference on the theory and applications of
cryptographic techniques (pp. 224-241). doi:10.1007/978-3-642-01001-9_13

Boldyreva, A., Chenette, N., & O’Neill, A. (2011). Order-preserving encryption revisited: Improved security
analysis and alternative solutions. In Advances in cryptology–CRYPTO 2011: 31st annual cryptology conference
(pp. 578-595). Academic Press.

Cui, Z., Lu, Z., Yang, L. T., Yu, J., Chi, L., Xiao, Y., & Zhang, S. (2023). Privacy and Accuracy for Cloud-Fog-
Edge Collaborative Driver-Vehicle-Road Relation Graphs. IEEE Transactions on Intelligent Transportation
Systems, 24(8), 8749–8761. doi:10.1109/TITS.2023.3254370

David, H. A., & Nagaraja, H. N. (2004). Order statistics. John Wiley & Sons.

Dyer, J., Dyer, M., & Xu, J. (2017). Order-preserving encryption using approximate integer common divisors. In
Data privacy management, cryptocurrencies and blockchain technology: ESORICS 2017 international workshops,
(pp. 257-274). doi:10.1007/978-3-319-67816-0_15

Guo, J., Wang, J., Zhang, Z., & Chen, X. (2018, September). An almost non-interactive order preserving
encryption scheme. In International conference on information security practice and experience (pp. 87-100).
doi:10.1007/978-3-319-99807-7_6

Gupta, P., & McKeown, N. (2001). Algorithms for packet classification. IEEE Network, 15(2), 24–32.
doi:10.1109/65.912717

Hacigümüş, H., Iyer, B., Li, C., & Mehrotra, S. (2002, June). Executing SQL over encrypted data in the database-
service-provider model. In Proceedings of the 2002 ACM SIGMOD international conference on management
of data (pp. 216-227). doi:10.1145/564691.564717

Hore, B., Mehrotra, S., Canim, M., & Kantarcioglu, M. (2012). Secure multidimensional range queries over
outsourced data. The VLDB Journal, 21(3), 333–358. doi:10.1007/s00778-011-0245-7

Hore, B., Mehrotra, S., & Tsudik, G. (2004, August). A privacy-preserving index for range queries. In Proceedings
of the thirtieth international conference on very large data bases (pp. 720-731). Academic Press.

Krendelev, S. F., Yakovlev, M., & Usoltseva, M. (2014, September). Order-preserving encryption schemes based
on arithmetic coding and matrices. 2014 federated conference on computer science and information systems.

Lee, Y. (2014). Secure ordered bucketization. IEEE Transactions on Dependable and Secure Computing, 11(3),
292–303. doi:10.1109/TDSC.2014.2313863

Lin, H. Y., & Tzeng, W. G. (2005). An efficient solution to the millionaires’ problem based on homomorphic encryption.
In Applied cryptography and network security: Third international conference (pp. 456-466). Academic Press.

Mei, Z., Zhu, H., Cui, Z., Wu, Z., Peng, G., Wu, B., & Zhang, C. (2018). Executing multi-dimensional range
query efficiently and flexibly over outsourced ciphertexts in the cloud. Information Sciences, 432, 79–96.
doi:10.1016/j.ins.2017.11.065

Peng, Y., Li, H., Cui, J., Zhang, J., Ma, J., & Peng, C. (2017). hOPE: Improved order preserving encryption
with the power to homomorphic operations of ciphertexts. Science China. Information Sciences, 60(6), 1–17.
doi:10.1007/s11432-016-0242-7

Popa, R. A., Redfield, C. M., Zeldovich, N., & Balakrishnan, H. (2011, October). CryptDB: Protecting
confidentiality with encrypted query processing. In Proceedings of the twenty-third ACM symposium on operating
systems principles (pp. 85-100). doi:10.1145/2043556.2043566

http://dx.doi.org/10.1145/1007568.1007632
http://dx.doi.org/10.1145/362686.362692
http://dx.doi.org/10.1007/978-3-642-01001-9_13
http://dx.doi.org/10.1109/TITS.2023.3254370
http://dx.doi.org/10.1007/978-3-319-67816-0_15
http://dx.doi.org/10.1007/978-3-319-99807-7_6
http://dx.doi.org/10.1109/65.912717
http://dx.doi.org/10.1145/564691.564717
http://dx.doi.org/10.1007/s00778-011-0245-7
http://dx.doi.org/10.1109/TDSC.2014.2313863
http://dx.doi.org/10.1016/j.ins.2017.11.065
http://dx.doi.org/10.1007/s11432-016-0242-7
http://dx.doi.org/10.1145/2043556.2043566

International Journal of Web Services Research
Volume 20 • Issue 1

17

Quan, H., Wang, B., Zhang, Y., & Wu, G. (2018). Efficient and secure top-k queries with top order-
preserving encryption. IEEE Access : Practical Innovations, Open Solutions, 6, 31525–31540. doi:10.1109/
ACCESS.2018.2847307

Teranishi, I., Yung, M., & Malkin, T. (2014). Order-preserving encryption secure beyond one-wayness. In
Advances in cryptology–ASIACRYPT 2014: 20th international conference on the theory and application of
cryptology and information security (pp. 42-61). doi:10.1007/978-3-662-45608-8_3

Wang, P., & Ravishankar, C. V. (2013, April). Secure and efficient range queries on outsourced databases using
Rp-trees. In 2013 IEEE 29th international conference on data engineering (ICDE) (pp. 314-325). doi:10.1109/
ICDE.2013.6544835

Wong, W. K., Cheung, D. W. L., Kao, B., & Mamoulis, N. (2009, June). Secure kNN computation on encrypted
databases. In Proceedings of the 2009 ACM SIGMOD international conference on management of data (pp.
139-152). doi:10.1145/1559845.1559862

Xiao, L., & Yen, I. L. (2012, March). Security analysis for order preserving encryption schemes. In 2012 46th
annual conference on information sciences and systems (CISS) (pp. 1-6). Academic Press.

Zeng, J., Che, J., Xing, C., & Zhang, L. J. (2018). Leadsrobot: A sales leads generation robot based on big data
analytics. In Big Data–BigData 2018: 7th International Congress, held as part of the Services Conference
Federation, SCF 2018, Seattle, WA, USA, June 25–30, 2018, Proceedings (pp. 277-290). Springer International
Publishing. doi:10.1007/978-3-319-94301-5_21

Zeng, J., Yang, L. T., Ma, J., & Guo, M. (2015). HyperspaceFlow: A system-level design methodology for smart
space. IEEE Transactions on Emerging Topics in Computing, 4(4), 568–583. doi:10.1109/TETC.2015.2501846

Zhan, Y., Shen, D., Duan, P., Zhang, B., Hong, Z., & Wang, B. (2022). MDOPE: Efficient multi-dimensional
data order preserving encryption scheme. Information Sciences, 595, 334–343. doi:10.1016/j.ins.2022.03.001

http://dx.doi.org/10.1109/ACCESS.2018.2847307
http://dx.doi.org/10.1109/ACCESS.2018.2847307
http://dx.doi.org/10.1007/978-3-662-45608-8_3
http://dx.doi.org/10.1109/ICDE.2013.6544835
http://dx.doi.org/10.1109/ICDE.2013.6544835
http://dx.doi.org/10.1145/1559845.1559862
http://dx.doi.org/10.1007/978-3-319-94301-5_21
http://dx.doi.org/10.1109/TETC.2015.2501846
http://dx.doi.org/10.1016/j.ins.2022.03.001

International Journal of Web Services Research
Volume 20 • Issue 1

18

Zhuolin Mei received the B.E. degree from Wuhan University of Technology in 2009, and the Ph.D. degree from
Huazhong University of Science and Technology in 2017. His research interests include access control, data
encryption, ciphertext search, and cloud computing. He is currently a Lecturer with the School of Computer and
Big Data Science, Jiujiang University, China.

Jing Yu received the M.Sc. degree from Huazhong University of Science and Technology in 2012 and the Ph.D.
degree from Wonkwang University in 2021. She is currently a lecturer at Jiujiang University. Her research interests
include Social Responsibility, Privacy-Preserving and Data Analysis.

Jinzhou Huang received the PhD degree in computer system architecture from Huazhong University of Science
and Technology (HUST), in 2015. He is currently an associate professor in the School of Computer Engineering,
Hubei University of Arts and Science, China. His research interests include online social networking, intelligent
transportation, internet of things, computer networking and information security.

Bin Wu received the Ph.D. degree from the Huazhong University of Science and Technology in 2017. His research
interests include privacy preserving, big data security, cloud security, information security, and information query.

Zhiqiang Zhao received the B.Sc. degree in computer science and technology in 2002 from Hunan University,
Changsha, China. He received the Ph.D. degree in the School of Computer Science and Technology, Huazhong
University of Science and Technology. He is currently an associate professor with the School of Mathematics and
Computer Science, Ningxia Normal University. His research interests include visual tracking, computer vision,
and image processing.

Caicai Zhang received the B.E. degree from Changchun University in 2009, and the Ph.D. degree from Huazhong
University of Science and Technology in 2016. Her research interests include uncertain data management, machine
learning and cloud computing. She is currently a Lecturer with the School of Modern Information Technology,
Zhejiang Institute of Mechanical & Electrical Engineering, China.

Jiaoli Shi received the Ph.D. degree from the School of Computing, Wuhan university, in 2017. Since 2012, she
has been an Assistant Professor at the school of computer and big data science, Jiujiang University. Her research
interests include Cloud security, ICN security, SDN and CDN. Dr. Jiaoli twice won the third prize of Doctoral Forum
of School of Computer Science, Wuhan University for Excellence in 2014 and 2015.

Xiancheng Wang received a B.S. degree from Shandong University of Science and Technology, China, in 2005,
and received an M.S. degree from Huazhong University of Science and Technology, China, in 2009, and recieved
an Ph.D degree from Kunsan National University, South Korea, in 2021. He is currently a lecturer with the School
of Computer and Big Data Science, Jiujiang University, and his research interests include Microgrid, Optimization
method, and Blockchain.

Zongda Wu is a full professor at Shaoxing University. He received his Ph.D. degree in Computer Science from
Huazhong University of Science and Technology (HUST) in 2009. From 2019, he worked as a postdoctoral research
fellow at Nanjing University. As the first author, he has published more than 70 papers on many journals (such as
TSC, TVT, TETC, JASIST, KIS, INS and WWW) and conferences (such as CIKM, ICDM and IJCNN). His research
interests are primarily in the area of information retrieval and user privacy.

