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ABSTRACT

With the surge in online video content, finding highlights and key video segments have garnered 
widespread attention. Given a textual query, video highlight detection (HD) and temporal grounding 
(TG) aim to predict frame-wise saliency scores from a video while concurrently locating all relevant 
spans. Despite recent progress in DETR-based works, these methods crudely fuse different inputs 
in the encoder, which limits effective cross-modal interaction. To solve this challenge, the authors 
design QD-Net (query-guided refinement and dynamic spans network) tailored for HD&TG. 
Specifically, they propose a query-guided refinement module to decouple the feature encoding from 
the interaction process. Furthermore, they present a dynamic span decoder that leverages learnable 2D 
spans as decoder queries, which accelerates training convergence for TG. On QVHighlights dataset, 
the proposed QD-Net achieves 61.87 HD-HIT@1 and 61.88 TG-mAP@0.5, yielding a significant 
improvement of +1.88 and +8.05, respectively, compared to the state-of-the-art method.
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INTRODUCTION

The rapid advancement of artificial intelligence has significantly elevated video content creation 
technologies, resulting in tens of millions of new videos being uploaded to online platforms daily 
(Taleb & Abbas, 2022; Abbas et al., 2021). Given this vast volume of content, users urgently desire 
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to see highlights or retrieve precise frames in a video that are most pertinent to a given textual query, 
allowing them to quickly skip to relevant video segments (Hamza et al., 2022; Sahoo & Gupta, 2021). 
In this paper, we focus on two video understanding tasks: highlight detection (HD) and temporal 
grounding (TG), as depicted in Fig. 1. Given a video paired with its corresponding natural language 
query, the objective of HD is to predict highlights for each video clip (Y. Liu et al., 2022). TG aims 
to retrieve all spans in a video that are most relevant to the query, where each span consists of a start 
and end clip (Gao et al., 2017). Since the goal of both tasks is to find the most appropriate clip, recent 
work (Lei et al., 2021) proposes the QVHighlights dataset to conduct HD and TG concurrently.

The primary challenge of the HD&TG task lies in effectively generating cross-modal features 
that contain query-related information, since such features are utilized to predict highlights and locate 
the query-matched spans. Inspired by DETR (Carion et al., 2020), Moment-DETR (Lei et al., 2021) 
designed a transformer encoder-decoder pipeline to tackle this challenge, as shown in Fig. 2 (a). 
However, Moment-DETR opts to directly concatenate video and text for coarse fusion in the encoder. 
This approach mixes intra-modal contextual modeling with cross-modal feature interaction. When the 
similarity between video frames far surpasses the video-query similarity, the resulting cross-modal 
features are irrelevant to the query, leading to diminished performance. Moreover, tasks like object 
detection (OD) and TG both necessitate decoder-based localization. Recent DETR-based research 
(S. Liu et al., 2022) indicates that utilizing dynamic bounding box anchors as queries within the 
decoder helps alleviate the problem of slow convergence in OD training. Yet, Moment-DETR solely 

Figure 1. A depiction of HD&TG. Given a video paired with its corresponding textual query, the goal of HD&TG is to predict frame-
wise saliency scores and locate all the most relevant spans simultaneously

Figure 2. Comparison between Moment-DETR (a) and QD-Net (b)
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employs learnable embeddings in the decoder and lacks adequate temporal span modeling, which 
hinders convergence speed and accuracy for a given TG task.

In this paper, we newly propose a HD&TG model named QD-Net (Query-guided refinement and 
Dynamic spans Network) to tackle the above issues. As shown in Figure 2(b), QD-Net decouples the 
feature encoding and interaction processes using a query-guided refinement module. This module fuses 
video and text tokens, which produce query-relevant cross-modal features. To capture intra-modal 
context from the global perspective, we introduce the straightforward yet efficient PoolFormer (Yu et 
al., 2022), which is applied to both visual and text encoders. In addition, we design a span decoder, 
which can more explicitly associate learnable embeddings with predicted span positions and speed 
up training convergence for the TG task. Specifically, the decoder contains learnable 2D spans that 
are dynamically updated at each layer, and their size can modulate the cross-attention weights within 
the decoder. To demonstrate the superiority of QD-Net, we execute comprehensive experiments and 
ablations on three publicly accessible datasets (QVHighlights, TVSum, and Charades-STA). The 
results reveal that QD-Net outperforms current state-of-the-art (SOTA) approaches. Notably, on 
the QVHighlights dataset, our model scores 61.87 HD-HIT@1 and 61.88 TG-mAP@0.5, showing 
gains of +1.88 and +8.05 over the SOTA method. In summary, our principal contributions include:

(1)  We propose a QD-Net tailored for HD&TG tasks. We design a query-guided refinement module 
to generate query-relevant cross-modal features and decouple the feature encoding from the 
interaction process. We introduce a simplified pooling mechanism in the encoder to model the 
global information within a single modality.

(2)  We propose a span decoder to dynamically associate learnable embeddings with span information 
and ensure faster training convergence for TG.

(3)  Extensive experimental results indicate that our approach achieves state-of-the-art performance 
on three publicly available datasets.

The remainder of this paper is structured as follows: The following section reviews related 
works in HD&TG. Next, we provide a detailed description of our proposed method, including the 
uni-modal encoder, query-guided refinement module, and span decoder. Experimental results and 
ablation analysis are then presented. Finally, we conclude the paper and outline future directions.

ReLATeD WORKS

Along with the development of artificial intelligence, an increasing number of researchers are 
leveraging deep learning to address challenges in areas such as big data (Stergiou et al., 2021; 
Galiautdinov, 2021), health diagnosis (Shankar et al., 2021; Anil et al., 2022), fake information 
detection (Li et al., 2022; Tembhurne et al., 2022), and video understanding (Zhang et al., 2022; Xu 
et al., 2023). Video highlight detection (HD) is designed to output saliency scores for each video 
clip. Trailer (Wang et al., 2020) and sLSTM (Zhang et al., 2016) formulate HD as a ranking problem, 
training a network to rank highlight moments higher than non-highlight moments. SL-Module (Tang 
et al., 2022) employs an attention-based model to discern multiple moments contributing to the desired 
moment. Since early HD datasets are without textual queries, existing multi-modal learning methods 
in HD primarily process visual and audio cues. Joint-VA (Badamdorj et al., 2021) utilizes the noise 
sentinel method and combines audio and visual information in a bi-attention module.

Video temporal grounding (TG) involves locating all pertinent video spans in response to a textual 
prompt. DRFT (Chen et al., 2021) integrates multi-modal features such as depth (Xu et al., 2021a; 
Xu et al., 2021b) and optical flow to learn complementary visual sources, but without a decoder it 
results in low accuracy of TG. 3D features (Chu et al., 2022; Srivastava et al., 2022) in the video 
also improve multi-modal representation, and GTR (Cao et al., 2021) utilizes a cubic embedding 
extractor to capture 3D features in videos. Yet 3D feature extracting is time-consuming. Imbalanced 
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annotations may introduce data bias (Hasib et al., 2021; Hammad et al., 2021), and therefore CMA 
(B. Zhang et al., 2020) employs a cross-modality network to rectify this bias.

Moment-DETR (Lei et al., 2021) proposes QVHighlights, a unique dataset specifically designed 
to support query-based HD and TG. Moment-DETR also provides an encoder-decoder model. To 
combine different input sources (text, audio, and video), UMT (Y. Liu et al., 2022) proposes a 
more unified transformer-based model for HD&TG. However, by removing the crucial decoder and 
Hungarian matching present in Moment-DETR, UMT compromises the performance on the TG task.

Uni-modal encoding is intended to capture contextual information from single-modal features 
(Zhang et al., 2022). The attention mechanism in the transformer (Vaswani et al., 2017) is adept at 
modeling long-range dependencies, which leads to some researchers (Lin et al., 2023) emphasizing its 
importance as the encoder. However, recent work (Yu et al., 2022) indicates that the effectiveness of 
transformers largely hinges on their token mixer blocks and MLP. Moreover, utilizing a straightforward 
pooling mechanism in token mixers has proven fruitful (Yu et al., 2022). In addition, Sparse-MLP 
(Tang et al., 2022) also achieves satisfying results using only MLPs. Inspired by these works, we 
introduce PoolFormer (Yu et al., 2022) during the encoding stage.

For a pair of video and textual queries, visual features F
v

 and textual features F
t

 are derived 
using the pre-trained visual extractor E

v
 and textual extractor E

t
. Next, the uni-modal encoder 

processes these features to model global information. By leveraging the query-guided refinement 
module, we fuse features from various modalities to derive cross-modal features F

vt
. Subsequently, 

we use the span decoder containing learnable spans S  with learnable embeddings Q  to get span 
features S . Ultimately, the prediction module yields HD&TG outcomes, with optimization informed 
by the depicted loss function.

MeTHOD

Overview
HD&TG (video highlight detection and temporal grounding) can be defined in this manner: for an 
untrimmed video V RL H Wv∈ × × ×3  containing L

v
 frames and a corresponding text query T LtÎ   

with L
t
 words, HD&TG aims to compute highlights (saliency scores) H LvÎ   for each frame and 

Figure 3. An overview of our proposed QD-Net framework
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concurrently locate video spans S Ls∈ × 2 , which are highly relevant to T , where each span comprises 
a start frame and an end frame.

Figure 3 illustrates our proposed model QD-Net, comprising five main parts: feature extractor, 
uni-modal encoder, query-guide refinement module, span decoder, and prediction heads. We first 
utilize the semantic web and frozen pre-trained model (detailed below, under “Experimental Settings”) 
to obtain video features F

v

L dv v∈ ×  and query features F
t

L dt t∈ × . Here, the visual and textual 
extractors are abbreviated as E

v
 and E

t
, respectively. Next, we utilize separate 2-layer MLP (multi-

layer perceptron) complemented by layer normalization (Ba et al., 2016) to map both the visual and 
textual tokens into a common embedding space with dimensionality d . To capture intra-model 
correlations under the global perspective, the contextual video features F

v

L dv∈ ×  and text features 
F
t

L dt∈ ×  are derived using the uni-modal encoder. The query-guided refinement component 
combines these features to obtain query-relevant cross-modal features F

vt

L dv∈ × , which are strictly 
aligned with the visual features in the temporal length. Subsequently, we use the span decoder and 
learnable spans S Ls∈ × 2 � with learnable embeddings Q L ds∈ ×  to get span features S L ds∈ × . 
Finally, the naïve prediction heads are employed to estimate highlight scores H LvÎ   and spans 
S Ls∈ × 2 .

Figure 4. (a) MetaFormer is a general architecture that does not specify a token mixer. (b) By integrating attention into token 
mixing, MetaFormer manifests as a Transformer. (c) In PoolFormer, a straightforward pooling mechanism is employed for 
fundamental token mixing
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Uni-Modal encoder
For the TG task, the 1D sliding-window strategy is employed in prior work (Hendricks et al., 2017) 
to pre-select video proposals. This strategy results in increased computational cost and diminished 
efficiency due to the necessity of densely overlapping sampling required for optimal accuracy. 
Additionally, a notable drawback is its tendency to seize on local temporal details while overlooking 
the temporally global information. For tasks related to video understanding, a thorough comprehension 
of the entirety of a video’s content is crucial for improved performance.

Considering the superiority of the transformer (Vaswani et al., 2017) in capturing long-range 
dependencies, studies (Lin et al., 2023) underscore the significance of attention techniques, directing 
their efforts towards crafting diverse attention-driven token mixers during encoding processes. 
However, a recent method (Yu et al., 2022) suggests that the primary drivers of a transformer’s success 
stem from the token mixing module and MLP, as depicted in Figure 4 (b). And Yu et al. (2022) 
propose a general architecture, MetaFormer-like transformer that does not specify a token mixer, as 
illustrated in Figure 4 (a). PoolFormer (Yu et al., 2022) harnesses a simple pooling mechanism as its 
token mixer, excelling in computer vision tasks compared to the traditional approach based on a 
transformer. As represented in Figure 4 (c), this non-parametric mechanism allows tokens to uniformly 
assimilate the information from nearby tokens, thus modelling the global intra-modal context. Through 
our experiments, we have been surprised to find that this simplified module achieves reasonable gain, 
as demonstrated in Tab. 1. Consequently, our uni-modal encoder is derived from PoolFormer, which 
incorporates a pooling mechanism paired with MLP. In addition, each encoder layer is equipped with 
layernorm (Ba et al., 2016) and residual block (He et al., 2016). To obtain the contextualized 
F
v

L dv∈ ×  and textual features F
t

L dt∈ × , the encoding process is:

F F F
x x x
= + ( )( )Norm Pool  (1)

F F F
x x x
= + ( )( )Norm MLP  (2)

where F F F
x v t
∈ { },  and Norm ⋅( )  represents layernorm.

Query-Guided Refinement Module
In the encoding stage of Moment-DETR (Lei et al., 2021), video and text are directly concatenated and 
then coarsely fused. However, if the similarity between video clips substantially exceeds the video-

Table 1. Performance comparison of QD-Net using Transformer or PoolFormer as uni-modal encoder on the QVHighlights 
validation set

Uni-Modal Encoder Layers

Temporal Grounding Highlight Detection

R1 mAP ³  Very Good

@0.5 @0.7 @0.5 @0.75 Avg. mAP HIT@1

Transformer

1 62.98 42.10 61.79 40.47 39.97 38.10 61.91

2 61.76 43.92 62.98 40.26 38.63 38.16 61.48

3 60.72 41.24 60.56 39.74 38.10 37.56 60.62

PoolFormer

0 60.13 41.65 60.93 39.77 38.92 38.26 60.45

1 61.89 43.55 62.12 41.79 40.87 38.05 61.78

2 62.32 45.61 63.15 42.05 41.46 38.56 62.06

3 60.61 42.59 62.14 40.74 40.20 37.93 61.31
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query similarity, the resulting cross-modal features become unrelated to the query, compromising 
overall performance. Therefore, we design a plug-and-play query-guided refinement module to 
decouple the feature encoding and interaction processes. This module fuses contextual features from 
different modalities and generates query-relevant cross-modal features by emphasizing the segments 
of visual clips most related to the textual words.

The framework of the query-guided refinement module is illustrated in Fig. 5. In this structure, 
the first cross-attention layer and MLP dynamically produce query features F

q

L dv∈ × , which are 

derived from contextual text features F
t

L dt∈ × . Here, F
v

 serves as query of cross-attention, while 
F
t

 is key and value. The cross-attention weights assess the relational significance between video 
clips and textual tokens, which allows every video clip to discern which textual concepts correspond 
to it. Subsequently, a self-attention mechanism refines query features F

q
, and we concatenate these 

features and feed them into pooling to obtain refined query features F
q

L dv∈ × . The above process 
can be summarized as:

F F F
q q q
= ( )



( )Pool cat SA,  (3)

where SA means self-attention and cat  is an abbreviation of concatenation. Finally, we use 
another cross-attention and MLP to obtain query-relevant cross-modal features F

vt

L dv∈ × , where 
F
q

 serves as query. Kindly observe that in Figure 5, we omit residual blocks and layernorm, yet they 
are incorporated across all layers. We also add learnable position embeddings (Vaswani et al., 2017) 
at the onset of every attention stratum. The cross-modal features F

vt
 also represent a fusion of span 

and highlight information. They are subsequently sent to prediction heads and the span decoder, 
which respectively output saliency scores H LvÎ   and span features S L ds∈ × .

Figure 5. The overview of the query-guided refinement module
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Span Decoder
DETR (Carion et al., 2020) represents a fundamental transformer encoder-decoder architecture in 
object detection (OD) tasks. Inspired by DETR, Moment-DETR (Lei et al., 2021) introduced a DETR-
based model explicitly tailored for TG. This is due to the striking similarity between TG and OD, 
where the outputs are predicted 2D and 4D boxes, respectively. UMT (Y. Liu et al., 2022) found that 
the decoder is the cause of slow convergence, thus it was subsequently removed to expedite training. 
This approach aligns with the conclusions drawn in TSP (Z. Sun et al., 2021). However, DAB-DETR 
(S. Liu et al., 2022) identified that the multi-modal property of queries could be the root cause of 
slow training. To address this, DAB-DETR proposed an explicit prior position, termed the dynamic 
anchor box, to compel each query to focus on a specific area. This method enabled faster training 
convergence and higher detection accuracy in OD.

Drawing inspiration from the above works, we design a dynamic span decoder with learnable 
spans tailored for TG, as shown in Figure 6. The span decoder contains N

s
 layers. Each layer of the 

span decoder comprises a simple self-attention layer and the width-modulated cross-attention layer, 
which are utilized for query updates and feature probing, respectively. 2D learnable spans (dynamic 
spans) represent the most relevant span location in cross-modal features F

vt

L dv∈ ×  and are updated 
in each decoder layer. This design explicitly associates learnable embeddings (high-dimensional span 
information) Q L ds∈ ×  with cross-modal features F

vt
. For ease of description and computation, we 

denote the beginning and end clips of a span as the central position and width of the span, respectively.
We define dynamic spans as S S S

c w

Ls= { } ∈ ×,  2 , where S
c

LsÎ   is the center of spans and 

S
w

LsÎ   is the width of spans. PE  represents sinusoidal position encoding (Vaswani et al., 2017) 
to generate position embeddings, which projects input to the embedding space of size d . PE  shares 
parameters in all span decoder layers. Since learnable spans S  is a binary number, we overload the 
PE  operator here:

PE PE cat PE PES S S S S
c w c w( ) = ( ) = ( ) ( )



, ,  (4)

In the self-attention layer, we formulate query q
s

, key k
s

 and value v
s

 as follows:

q Q
s
= + ( )FFN E

1
 (5)

k Q v Q
s s
= + ( ) =FFN E

1
,  (6)

Figure 6. The framework of the span decoder
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where FFN
1
 maps input to d  dimensions, FFN

1

2:  L d L ds s× ×→ . Span embeddings . ..
Following DAB-DETR, we employ FFN

2
 to derive scaled features Q

c

L ds∈ ×  that are dependent 
on the center information. These scaled features subsequently undergo element-wise production with 
the span embeddings E S

c c

L ds= ( ) ∈ ×PE  , which leads to an effective rescaling of these embeddings. 
In the width-modulated cross-attention layer, we define query q

c
, key k

c
 and value v

c
 as follows:

q Q E Q
c c c
= ⋅



cat ,  (7)

k F P v F
c vt c c vt
= ( )



 =cat PE, ,  (8)

where Q Q
c
= ( )FFN

2
,  FFN

2
:  L d L ds s× ×→ .  ×  is the element-wise production. 

PE P
c

L dv( ) ∈ ×  denotes center position embeddings for cross-modal features F
vt

. The position 
embeddings for query and key are produced using 1D center coordinates.

To improve the span position prior, width information is incorporated into the cross-attention 
map, leading to the computation of width-modulated cross-attention (WMCA ) as follows:

WMCA Softmax=
⋅
⋅












⋅

q k

d

Q

S
vc c

T
w

w
c

 (9)

In this equation, d  represents the scaling factor (Vaswani et al., 2017) in the softmax function. 
S
w

LsÎ   denotes the width of learnable spans S . Q Q
w

Ls= ( ) ∈FFN
3

  indicates the reference 

width derived from learnable embeddings Q , FFN
3
:  L d Ls s× → . For additional details, refer to 

Fig. 6.
Finally, relative span positions ∆ ∆S S

c w

Ls,{ } ∈ × 2 , derived from the outputs ′ ∈ ×Q L ds , are 
utilized to dynamically update the spans:

′ = { } = + +{ }S S S S S S S
c w c c w w
' ', ,∆ ∆  (10)

In this formula, ′ ∈ ×S Ls 2  represents the updated spans, and ∆ ∆S S Q
c w
,{ } = ( )′FFN

4
, 

FFN
4

2:  L d Ls s× ×→ . We denote the outputs from the final layer of the decoder as S L ds∈ × , 
which represent the span features. These features are subsequently fed into the prediction heads to 
generate the results for TG.

Prediction Heads and Loss Function

For query-relevant cross-modal features F
vt

L dv∈ ×  contain joint span and highlight details, we 
apply 1-layer FFN to estimate the highlight scores H LvÎ  . With regards to the span features 
S L ds∈ × , we utilize 2-layer FFN and a sigmoid function to obtain the normalized center and width 
of spans S Ls∈ × 2 . Additionally, another 1-layer FFN with a softmax is used to derive span class 
labels. In the TG task, predicted spans that align with the ground truth (GT) are assigned a foreground 
label; others are set as background. To facilitate a more accurate comparison with the baseline model, 
Moment-DETR, we adopt its training loss and loss hyperparameters l

*
.
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In the calculation of the saliency loss 
h

, a ranking loss is applied to distinguish the relative significance 
between two specific pairs of moments, with an emphasis on challenging moments. One pair contrasts 
the moment with the top score moment s

high
 and the one with the lowest score s

low
 among the ground 

truth moments. Another pair contrasts moments inside and outside within the ground truth, and we denote 
their scores as s

in
 and s

out
. Letting the margin be denoted by m , 

h
 can be formulated as:


h low high out in

m s s m s s= + −( )+ + −( )max max0 0, ,  (11)

Building upon Moment-DETR, we adopt the Hungarian method to determine the best bipartite 
pairing between the predicted moments and their corresponding ground truths. Given that there might 
not always be a one-to-one mapping between the predicted and actual moments. We assume that L

n
 

represents the pairs of matched predictions and ground truth within a video. We employ the span loss 


s
 to evaluate the differences between the estimated span s  and the actual span s . This span loss 

integrates both L1 loss l
L1

 and IoU (Rezatofighi et al., 2019) loss 
IoU

:

 
s
= − + ( )





=
∑
i

L

L IoU IoU

n

s s s s
1

1 1
l l� �� �,  (12)

Furthermore, we utilize the cross-entropy metric, denoted as 
cls

, to categorize the estimated 
spans into foreground or background categories. This is formulated as:


cls

log log= − ( )+ −( ) −( )





=
∑
i

L

p i i i i

s

w z p z p
1

1 1  (13)

In the expression, p
i
 denotes the forecasted likelihood of the foreground, while z

i
 represents 

its label. To counterbalance label disproportion, the foreground label receives an elevated weight w
p

. 
The total loss is represented as 

total
:

   
total s cls
= + +

h cls
l  (14)

eXPeRIMeNTS

Datasets
To demonstrate the robustness and superior performance of our proposed QD-Net, we carry out 
comprehensive experiments on three benchmark datasets: QVHighlights (Lei et al., 2021), TVSum 
(Song et al., 2015), and Charades-STA (Gao et al., 2017).

QVHighlights
QVHighlights is currently the only dataset that supports both temporal grounding (TG) and highlight 
detection (HD) tasks. This dataset contains a diverse set of 10,148 videos from online database 
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YouTube, each with a maximum length of 150 seconds. It comprises about 10,000 annotations, which 
include a free-text query, video spans (averaging about 1.8 spans for each query), and highlight scores 
on a per-clip basis. A distinctive feature of QVHighlights is its provision of a just benchmarking 
system, where evaluations can be obtained solely by submitting predictions for the testing split to 
the QVHighlights online server. In terms of data division, we adhere to the original QVHighlights 
splits, allocating 0.7 for training, 0.15 for validation, and 0.15 for testing.

TVSum
TVSum is a notable dataset tailored for HD tasks, which encompasses videos from 10 distinct 
categories, each containing 5 videos. Following the setting of UMT (Y. Liu et al., 2022), we divide 
the dataset, designating 80% for training purposes and the residual 20% for evaluation.

Charades-STA
Charades-STA is utilized as a standard dataset for the TG tasks. Originating from the initial Charades 
(Sigurdsson et al., 2016) dataset, Charades-STA features approximately 9,800 videos of everyday 
indoor actions and close to 16,000 annotations. Traditionally, the dataset is divided into 12,300 
annotations for training and 3,700 for testing.

evaluation Metrics
For the QVHighlights dataset, our TG evaluation metrics include Recall@1 at IoU of 0.5 and 0.7, 
mAP at IoU of 0.5 and 0.75, and the average mAP at IoU between 0.5 and 0.95 (incremented in steps 
of 0.05). When assessing HD, we utilize mAP and HIT@1, with the latter measuring the hit ratio for 
the highest-scored moment. For the TVSum dataset, we opt to use the top-5 mAP metric. Meanwhile, 
we adopt Recall@1 at 0.5 and 0.7 IoU settings for Charades-STA.

experimental Settings
For the QVHighlights dataset, we follow Moment-DETR and apply semantic web technologies 
(Narayanasamy et al., 2022) to aid annotation generation. Then, we use the image-encoder of CLIP 
(Radford et al., 2021) and SlowFast (Feichtenhofer et al., 2019) to extract features, and then concatenate 
to generate visual features F

v

Lv∈ × 2816 . We employ the textual encoder of CLIP for extracting query 

Table 2. Comparison of results on the QVHighlights testing set. Each model only employs video and text features. M-DETR is 
the abbreviation of Moment-DETR. Top-performing results are bold

Methods

Temporal Grounding Highlight Detection

R1 mAP ³  Very Good

@0.5 @0.7 @0.5 @0.75 Avg. mAP HIT@1

BeautyThumb (Song et al., 2016) - - - - - 14.36 20.88

DVSE (Liu et al., 2015) - - - - - 18.75 21.79

MCN (Hendricks et al., 2017) 11.41 2.72 24.94 8.22 10.67 - -

CAL (Escorcia et al., 2019) 25.49 11.54 23.40 7.65 9.89 - -

XML (Lei et al., 2020) 41.83 30.35 44.36 31.73 32.14 34.49 55.25

XML+ (Lei et al., 2020) 46.69 33.46 47.89 34.67 34.90 35.38 55.06

M-DETR (Lei et al., 2021) 52.89 33.02 54.82 29.40 30.73 35.69 55.60

UMT (Y. Liu et al., 2022) 56.23 41.18 53.83 37.01 36.12 38.18 59.99

QD-Net (Ours) 61.71 44.76 61.88 39.84 40.34 38.78 61.87
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features F
t

Lt∈ × 512 . As for TVSum, we adopt the approach of UMT (Y. Liu et al., 2022), utilizing 
I3D video features F

v

Lv∈ × 1024  that are pre-trained on Kinetics-400 (Kay et al., 2017). Additionally, 
textual embeddings F

t

Lt∈ × 512  are derived from video titles via CLIP. For Charades-STA, the 
standard VGG (Simonyan & Zisserman, 2014) features F

v

Lv∈ × 4096  are used, alongside GloVe text 
features F

t

Lt∈ × 512 . For all the input video and text, we configure their maximum length, L L
v t
/ , 

as 75/32 for QVHighlights, 100/10 for TVSum, and 120/10 for Charades-STA.
In our proposed model, we utilize a 2-layer uni-modal encoder adopting a pooling size of 3 and 

a stride of 2. The query-guided refinement module and span decoder N
s
 are respectively set as 1 

and 4 layers. We configure the attention dimensionality as d = 256  and the number of multi-heads 
as 8. The number of dynamic spans L

s
 is set to 30. In addition, our model employs the post-style 

layernorm (Ba et al., 2016) and 0.1 dropout rate. The loss coefficients are denoted as: l
L1

10= , 
l
IoU

= 2 , l
cls

= 4 , m = 0 2. , w
p
= 10 . We train our model using 2 NVIDIA 3090 GPUs. For 

QVHighlights, TVSum, and Charades-STA datasets, the batch size and epochs are 64/4/16 and 
200/1000/100, respectively. We employ AdamW (Loshchilov & Hutter, 2017) optimizer with a 
learning rate of 1e-4 and a weight decay of 1e-4.

experimental Results
Firstly, we report a comparison between our proposed QD-Net and prior works on the QVHighlights 
testing set, as shown in Tab. 2. To ensure a fair comparison, all methods exclusively input video and 
textual queries. The results indicate that our method surpasses the state-of-the-art method UMT by 
5.48%, 8.05%, and 1.88% in terms of TG-R1@0.5, TG-mAP@0.5, and HD-HIT@1, respectively. Tab. 
3 contrasts the performance of our model against existing models on the QVHighlights validation 
set. Significantly, our model also achieves the top performance.

Table 3. Results of different models on QVHighlights validation set

Methods

Temporal Grounding Highlight Detection

R1 mAP ³  Very Good

@0.5 @0.7 @0.5 @0.75 Avg. mAP HIT@1

M-DETR (Lei et al., 2021) 53.94 34.84 - - 32.20 35.65 55.55

UMT (Y. Liu et al., 2022) - - - - 37.79 38.97 59.99

QD-Net (Ours) 62.32 45.61 63.15 42.05 41.46 38.56 62.06

Table 4. Quantitative results on TVSum dataset. Comparison against the state-of-the-art highlight detection methods

Methods MS VT PK BK VU FM GA PR DS BT Avg.

sLSTM (Zhang et al., 2016) 47.7 41.1 44.8 40.6 46.2 45.2 46.3 46.1 45.5 47.1 45.1

Trailer (Wang et al., 2020) 60.8 61.3 59.1 64.7 54.6 58.2 65.7 70.1 68.1 65.6 62.8

SL-Module (Liu et al., 2015) 86.2 86.5 79.0 72.6 68.7 58.9 74.9 63.2 64.0 78.9 73.3

Joint-VA (Badamdorj et al., 2021) 86.1 83.7 80.1 73.0 57.3 70.0 78.5 69.2 67.5 97.4 76.3

UMT (Y. Liu et al., 2022) 78.8 87.5 81.4 86.9 81.5 76.0 88.2 87.0 79.6 84.4 83.1

QD-Net (Ours) 87.5 86.1 82.6 84.5 82.4 79.2 89.7 84.3 76.9 85.6 84.0



International Journal on Semantic Web and Information Systems
Volume 19 • Issue 1

13

Furthermore, we present a visualization of the outputs on QVHighlights, as illustrated in Fig. 8. 
The illustration displays the input query and corresponding video in a top-down sequence, accompanied 
by the forecasted spans and moment-wise highlight scores. Fig. 8 (a) and (b) demonstrate that our 
model is capable of effectively predicting single or multiple spans, as well as proficiently predicting 
highlights.

Tab. 4 exhibits the quantitative results on the TVSum dataset for highlight detection. Here, QD-
Net outperforms most other methods across most categories. To be concrete, although our model 
trails UMT marginally in a few categories, it surpasses UMT by 0.9% in average top-5 mAP across 
all categories. Moreover, QD-Net outperforms UMT by 8.7% and 3.2% in the MS (Making Sandwich) 
and FM (Flash Mob gathering) categories, respectively.

In Tab. 5, we show the performance evaluation of QD-Net against other methods on the Charades-
STA testing set. Our method exhibits superior performance across all metrics. Specifically, regarding 
the R1@0.5 and R1@0.7 metrics, QD-Net outperforms the existing SOTA method PEARL (Zhang 
& Radke, 2022) by margins of 3.93% and 0.99%, respectively.

Ablation Studies
To assess the impact of individual components in our introduced framework, we perform detailed 
ablation studies, as shown in Tab. 1, 6, and 7. These ablations are executed on the QVHighlights 
validation subset, as the online submission limit of five trials on the test split server. In row 1 of Tab. 
6, we first replicate Moment-DETR as our baseline model. Subsequently, to decouple the feature 

Table 5. Quantitative results on Charades-STA testing set. Comparison against the state-of-the-art temporal grounding models

Methods
R1 R5

@0.5 @0.7 @0.5 @0.7

MCN (Hendricks et al., 2017) 4.05 - - -

2D-TAN (S. Zhang et al., 2020) 39.70 23.31 80.32 51.26

UMT (Y. Liu et al., 2022) 49.35 26.16 - -

M-DETR (Lei et al., 2021) 53.63 31.37 - -

PEARL (Zhang & Radke, 2022) 53.50 35.40 - -

QD-Net (Ours) 57.43 36.39 87.38 63.01

Table 6. Ablation studies of query-guided refinement module (QRM) on QVHighlights validation split. All results are our 
reproduction or experimental results. Moment-DETR (Lei et al, 2021) is abbreviated as M-DETR

Methods Layers
TG HD (³  VG)

R1@0.5 R1@0.7 mAP Avg. mAP HIT@1

M-DETR (Lei et al., 2021) - 53.94 34.84 32.20 35.65 55.55

M-DETR + QRM 1 59.87 43.42 36.86 37.06 58.26

M-DETR + QRM 2 58.71 43.35 36.01 36.99 57.16

QD-Net w/o QRM - 59.74 42.65 38.21 37.59 60.14

QD-Net + QRM 1 62.32 45.61 41.46 38.56 62.06

QD-Net + QRM 2 60.39 42.58 40.11 38.19 60.00

QD-Net + QRM 3 60.84 44.90 39.26 38.77 61.74
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encoding with interaction process, we incorporate a plug-and-play query-guided refinement module 
(QRM) into Moment-DETR, as shown in rows 2 and 3 of Tab. 6. Our findings suggest that QRM 
effectively fuses visual and textual features, improving performance considerably.

To validate the effectiveness of the span decoder with dynamic spans (DS), we incorporate DS 
into the original Moment-DETR and UMT. The former initially utilizes a straightforward transformer 

Table 7. Ablation experiments of span decoder with dynamic spans (DS) on QVHighlights validation split. All results are our 
reproduction or experimental results

Methods Layers
TG HD (³  VG)

R1@0.5 R1@0.7 mAP Avg. mAP HIT@1

M-DETR (Lei et al., 2021) - 53.94 34.84 32.20 35.65 55.55

M-DETR +DS 4 59.29 42.71 36.96 38.12 61.21

UMT (Y. Liu et al., 2022) - 60.06 43.42 38.13 39.01 62.71

UMT+ DS 4 60.97 45.48 40.34 38.57 61.29

QD-Net w/o DS - 59.87 43.16 37.03 39.13 63.24

QD-Net + DS 2 62.23 46.32 41.37 38.46 61.16

QD-Net + DS 4 62.32 45.61 41.46 38.56 62.06

QD-Net + DS 6 61.16 46.24 40.83 38.48 61.68

Figure 7. Compared to Moment-DETR on the QVHighlights validation split, QD-Net with dynamic spans (DS) converges faster 
and performs better
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decoder, while the latter removes both the decoder and the Hungarian algorithm. As illustrated in 
lines 1 to 4 of Tab. 7, our results confirm that DS considerably enhances the model’s performance 
on the TG task. Additionally, it is evident that UMT’s performance on TG deteriorates when the 
decoder is removed. Then, we combine QRM and DS, as shown in line 4 of Tab. 1, and find a marked 
improvement in the model’s performance. Building upon this, we attempt to integrate transformer or 
PoolFormer (Yu et al., 2022) as a uni-modal encoder, as illustrated in Tab. 1. Surprisingly, using a 
simple pooling operation in the encoder effectively captures contextual information within a single 
modality, yielding better results than self-attention. However, excessive encoder layers may lead to 
model overfitting. Consequently, we configure the encoder with two layers.

In Tab. 6, lines 4 to 7 display the results after removing QRM from our framework. The Average 
mAP (mAP Avg.) and HIT@1 drop significantly by 3.25% and 1.92%, respectively, illustrating that 
QRM is an indispensable part of cross-modal fusion. Moreover, an excessive number of QRM layers 
can lead to model overfitting, so we limit the number of QRM layers to 1. As shown in lines 4 to 7 
of Tab. 7, adding DS into QD-Net results in a remarkable improvement in temporal grounding (TG) 
performance, where mAP Avg. is increased by 4.43%. However, the metrics of HD on QD-Net with 
DS see a slight decline. We speculate that over-optimizing the decoder may introduce noise into the 
cross-modal features. Furthermore, Figure 7 contrasts the efficiency of QD-Net with the inclusion and 
exclusion of the DS component. QD-Net with DS converges at the 75th epoch and performs better. In 
contrast, QD-Net without DS only converges at the 125th epoch and displays inferior performance. 
This comparison indicates that using learnable 2D spans to represent queries leads training to converge 
faster and results in improved performance.

CONCLUSION

In this paper, we propose a novel model called QD-Net (Query-guided refinement and Dynamic spans 
Network) for video highlight detection and temporal grounding (HD&TG) in online databases. Unlike 
previous transformer encoder decoder–based methods that combine multi-modal features in a coarse 
manner, our proposed QD-Net includes a query-guided refinement module. This module effectively 
separates feature encoding from the interaction process and produces query-relevant cross-modal 

Figure 8. Visual results on the QVHighlights validation set. (a) Our method adaptively predicts single span and clip-wise saliency 
scores. (b) Our method accurately processes intricate video containing multiple spans



International Journal on Semantic Web and Information Systems
Volume 19 • Issue 1

16

features. Subsequently, we introduce an encoder containing a simplified pooling mechanism to model 
the intra-modal information under a global view. In addition, we design a dynamic span decoder to 
accelerate training convergence for TG. This decoder utilizes learnable 2D spans to represent queries 
of the decoder, thereby strengthening the connection between learnable embedding and temporal 
span information. Finally, to demonstrate the superiority and robustness of our method, we undertake 
detailed experiments and ablation studies on three benchmark datasets: QVHighlights, TVSum, and 
Charades-STA. The results indicate that QD-Net outperforms the current state-of-the-art methods.

In future work, it will be essential to further investigate the span decoder. As we have observed 
in QD-Net, while the decoder significantly enhances the convergence and performance of TG, there 
is a slight decrease in accuracy for HD. Additionally, there is great value in leveraging large-scale 
visual-linguistic models to generate highlight scores. Finally, attempting additional multi-modal 
features, such as optical flow and depth maps, would be worthwhile.
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